This study is intended to secure seolge and structural strength of the suspension as necessary amphibious boat amphibious facilitate a possible amphibious boat 7m parenting class. Developed a technique for mounting a three-wheel drive track traveling device to medium-sized vessels, and the control device in order to improve the efficiency of the safety and operation of this device, the braking device of the land driving, the steering apparatus and the linear adapted to install the device development and installation of the wheels on the bottom, leaving space travel wheel award during lift pockets (wheel pocket) analyzed the impact of the ship resistance and stability, and tried to improve the problem.
최근에 개발된 시스템 온칩 프로세서는 통합 성능을 요구하는 작업의 가능성을 제공하였으며, 이러한 작업은 예전에는 우수한 성능을 가진 컴퓨터의 도움만으로 수행 할 수 있는 것이었다. 본 논 문에서는 실제 환경 하에서 자율 이동 장치의 GPS 위치측정을 개선하기 위해 임베디드 영상처리기 법을 활용하는 고급 제어 시스템을 소개한다. 메인 컨트롤 시스템은 Raspberry PI 개발 보드에 통합 된 ARM(SoC.) 아키텍처를 기반으로 한다. 제시한 제어 시스템은 실시간 비디오 캡처, 전력-효율적 이미지 처리 작업, 예를 들어 (임계 값 처리, 이진화, 모션 감지 등) 및 비디오와 같은 스트리밍 결과 이미지를 처리 할 수 있다. GPS 정밀도는 WAAS(EGNOS) 위성을 활용하여 다만 3 미터의 정밀도를 제공 할 수 있다. 제안한 솔루션은 도로와 보도의 경계를 감지하기 위해 GPS 솔루션 및 임베디드 이 미지 처리를 사용한다. 일부 도로나 통로가 길가의 흰색 선을 제공하지 않기 때문에 제시한 알고리 즘은 길가의 흰색 선을 검출하지 않고 보편적인 도로나 보도를 감지한다. 제안한 시스템은 소형 이 동장치에 사용할 수 있다. 예를 들어, 생산 공간 사이의 긴 거리를 가진 중공업 산업 단지에서 부품 수송을 위한 이동장치 등에 사용할 수 있다.
Kart-Racing which is called a microcosm of F1`s racing is the most basic step in the car racing. A Kart consisting of the very fundamental structure which does not include differential gear and suspension is sampler than a typical car. It is necessary to reduce the Lab time at the Kart-racing`s corner so the research investigate the Kart through check of racing condition and of driving factors about cornering. The study measured to make the kart closely factual condition which was showed the main parameters for more actual decision of kart`s dynamic characteristics and estimated the real-time data from the developed kart whose sensor was installed at all tires and which was pursued through the GPS.
This paper focuses on development of a testbed for analysis of robot-terrain interaction on rough terrain and also, through one wheel driving experiments using this testbed, prediction of maximum velocity and acceleration of UGV. Firstly, from the review regarding previous researches for terrain modeling, the main variables for measurement are determined. A testbed is developed to measure main variables related to robot-terrain interaction. Experiments are performed on three kinds of rough terrains (grass, gravel, and sand) and traction-slip curves are obtained using the data of the drawbar pull and slip ratio. Traction-slip curves are used to predict driving performance of UGV on rough terrain. Maximum velocity and acceleration of UGVs are predicted by the simple kinematics and dynamics model of two kinds of 4-wheel mobile robots. And also, driving efficiency of UGVs is predicted to reduce energy consumption while traversing rough terrains.
Security robot has gradually developed and deployed in order to protect civilian’s lives as well as fortune and subjugate the shortcomings of CCTV which lacks of mobility. We have developed a security robot for outdoor environment and the main purpose of the driving mechanism is to overcome the bumps or projections with high speed. The robot platform consists of 4 omnidirectional wheel-based driving mechanisms and suspension for each driving mechanism. In this paper, principal suspension parameters of outdoor security robot for overcoming obstacles with stability are studied and approximately optimized using Response Surface Methodology (RSM) since it is difficult to find the exact relationship between suspension parameters and the shock, which is significantly associated with stability of the robot, at the robot platform. Simulation using ADAMS is conducted for assessing the feasibility of optimized design parameters.
최근 미국, 유럽, 일본 등 우주선진국을 중심으로 달, 화성 등 행성 탐사를 위한 로버(Rover) 시스템에 대해 많은 연구 개발이 진행되고 있다. 행성탐사용 로버 시스템 기술 중 특히 주행장치, 차율 주행 알고리즘, 탑재체 등을 중심으로 많은 연구가 수행되고 있다. 이 논문에서는 실제 행성탐사에 앞서 지상에서 로버 주행장치의 주행성 및 안정성을 평가하기 위해 지상시험모델용 로버의 주행장치에 대한 개념 설계 내용을 소개하였다. 또한, 로버 주행장치의 기술적인 관점에서 해외 연구개발 사례를 분석, 기술하였다. 이를 통해 로버 주행장치 개발을 위한 요구사항들을 주행성과 안정성 관점을 고려하여 도출하였다. 설계된 로버 주행장치는 높은 주행성과 안전성을 만족하기 위해 6족을 가지고 있으며, 각 다리의 관절을 제어하는 능동 서스펜션(Active Suspension)을 적용하였다. 이러한 종류의 주행장치 개념은 근미래 (Constellation 프로그램)에 수행될 유인달 탐사에서 이동 및 거주 장치로써 NASA의 ATHELE을 통해 처음 적용하여 개발하고 있다. 이 연구에서 제안된 장치 개념은 이와 달리 우리나라에서 앞으로 수행할 무인소형 달탐사에 적용하고자 설계되었다. 이 논문에서 소개된 내용은 향후 국내에서 행성탐사용 로버시스템을 본격적으로 개발하고자 할 때 유용한 참고자료 및 경험을 제공할 것이다.