Many piping systems installed in the power plant are directly related to the safety and operation of the plant. Various dampers have been applied to the piping system to reduce the damage caused by earthquakes. In order to reduce the vibration of the piping system, this study developed a steel coil damper (SCD) with a straightforward structure but excellent damping performance. SCD reduces the vibration of the objective structure by hysteretic damping. The new SCD damper can be applied to high-temperature environments since it consists of steel members. The paper introduces a design method for the elastoplastic coil spring, which is the critical element of SCD. The practical applicability of the design procedure was validated by comparing the nonlinear force-displacement curves calculated by design equations with the results obtained from nonlinear finite element analysis and repeated loading test. It was found that the designed SCD’s have a damping ratio higher than 25%. In addition, this study performed a set of seismic tests using a shaking table with an existing piping system to verify the vibration control capacity on the piping system by SCD. Test results prove that the SCD can effectively control the displacement vibration of the piping system up to 80%.
In this study, the seismic safety of nuclear power plant structures is evaluated and verified by performing a vibration test on a relatively simple shear wall structure. The shear walls are the prominent members of nuclear power plants and resist the seismic load. The shear wall structure is designed and manufactured to perform shaking table tests and is used to increase the accuracy of the analytical method by comparing them with the numerical analysis results. Different results will be checked and more efficient application methods will be studied depending on the method of designing reinforced concrete structures.
본 논문에서는 상부구조물과 진동대에서 측정된 가속도를 이용하여 구조물과 지반의 동적 상호작용을 고려한 진동대 시험을 수행하는 방법이 제안된다. 부분구조법을 기반으로 한 제안된 실험법은 상부구조물만을 실험체로 사용하고 지반모델에 대해서는 동적지반강성을 진동대 제어기에 반영하는 방법이다. 이 때, 실험부분인 상부구조물은 전체 구조물 지반계의 동적거동을 모사하기 위한 운동으로 진동대에 의해 가진된다. 먼저, 구조물 지반계의 운동방정식으로부터 유도된 수치 시뮬레이션 검증모델에 의해 제안된 방법의 타당성이 검증된다. 또한, 진동대의 전달함수를 고려한 시뮬레이션 모델로부터 진동대 시험에 의한 제안된 방법의 적용성이 수치 시뮬레이션에 의해 검증된다.
1936년 7월 4일 경상남도 하동군 화개면을 진앙지로 하는 규모 5의 지진이 발생하였다. 이 지진으로 인하여 쌍계사 경내 건물과 문화재가 손상을 입었으며 금당 앞에 위치한 오층석탑의 탑두(종형석)가 추락하였다. 쌍계사 지진의 세기를 정량적으로 평가하기 위하여 철저한 고층을 거쳐서 실물크기의 석탑 모델을 제작하였다. 제작된 석탑모델을 진동대에 탑재하여 낮은 진폭에서 석탑모델의 동특성을 확인하는 예비시험과 지진파의 지진가속도를 증가시켜 가면서 석탑모델의 거동 특성을 규명하는 본 시험을 실시하였다. 석탑모델의 제작과정과 시험 절차에 관하여 상세히 기술하였고 진동대 시험 결과를 제시하고 그 결과에 관하여 논하였다.
2009년 개소한 부산대학교 지진방재연구센터는 국내 최대 규모의 진동대 연구장비 보유기관으로 지진방재분야의 다양한 실험연구, 내진기술과 제품에 대한 공인시험 및 검증평가를 지원하고 있으며, 내진시험 방법의 표준화 연구 등 국가연구개발 과제의 수행, 민간기업 연구개발 지원과 컨설팅, 교육사업 등을 수행하고 있다. 연구역량 강화를 위해 국내 내진연구 분야 기관 및 전문가그룹과 협력체계를 구축하고 있으며, 일본의 E-Defense(NIED), 대만의 NCREE, 유럽의 JRC, 미국의 EERC 등 국외 연구기관과도 국제공동연구 네트워크를 구축하고 있다.
In this study, the shake table tests were performed for seismic performance evaluation of fire protection riser pipes. The specimen was subjected to a tri-axial time history shake table test with acceleration levels corresponding to the 0.5g and 0.7g ZPA design level.
지하역사의 대부분은 지진에 대비한 내진설계가 거의 수행되지 않음으로 인하여 일정규모 이상의 지진이 발생할 경우 대규모 인명 및 재산피해가 우려된다. 지중구조물인 지하역사의 신뢰도 높은 내진성능 평가를 위하여 지진하중 재하 시 지반과 구조물의 상호작용이 고려된 거동의 고찰과 검증이 요구된다. 이에 본 연구에서는 수도권 소재의 실제 지하역사에 대하여, 상사비 1/60 스케일의 축소모형 지하역사 구조물 시험체에 장주기인 Kobe지진파와 단주기인 Northridge지진파를 적용한 원심모형 진동대 시험을 수행하였다, 원심모형시험결과와 응답변위법, 동일단면에 대해 SHAKE91에 의한 지반 및 구조물의 상대변위, 구조물의 모멘트에 대하여 비교․분석함으로써 지하역사의 내진성능을 평가하고자 하였다.