We analyzed the performance of hubless rim propellers based on the number of blades, maintaining a fixed pitch ratio and expanded area ratio, using computational fluid dynamics (CFD). Thrust coefficient, torque coefficient and efficiency according to the number of blades were analyzed. In addition, the pressure distribution on the discharge and suction sides of the blade was analyzed. As the advance ratio increases, the thrust coefficient decreases. The highest thrust was shown when the advance ratio was lowest. For the three, four, five and six-blades, the torque coefficient tended to decrease as the advance ratio increased. In the case of seven and eight-blades, the torque coefficient tended to increase as the advance ratio increased. The maximum efficiency was found when the advance ratio was 0.8. When the three-blade, it showed high efficiency at all advance ratios. A high pressure distribution was observed at the leading edge of the discharge blade, and a low pressure distribution was observed at the trailing edge. Applying a hubless rim-driven thruster with the three-blade can generate higher thrust and increase work efficiency.
직류전동기는 속도제어가 간단하고, 출력 토크특성이 우수한 장점으로 윈치나 카고 펌프 모터 등으로 선박에서 많이 사용되었으며, 전기추진선박이 도입된 초기에는 선박용 추진전동기로도 적용되었다. 하지만 브러시와 정류기와 같은 기계적 정류장치의 단점으로 인해 최근에는 직류전동기와 전기적인 특성은 매우 유사하지만 기계적인 정류장치를 설치하지 않고 반도체 소자를 이용한 전자적인 정류장치를 사용하는 브러시리스 직류전동기의 사용이 증가하고 있다. 기존의 브러시리스 직류전동기를 구동하기 위한 인버터 시스템은 2 상여자방식을 사용하므로 역기전력파형이 사다리꼴모양으로 되며, 이로인해 전류가 흐르는 권선이 바뀌는 상전류 전환 구간에서 고조파와 토크리플이 발생하게 된다. 이러한 고조파와 토크리플을 저감하기 위한 다양한 방안이 연구되어 발표되었으며, 본 연구에서는 전력분 석프로그램을 이용하여 브러시리스 직류전동기의 구동회로에 비례적분 속도전류제어기 알고리즘을 구현한 Cascaded H-Bridge 멀티레벨 인버터를 적용하였다. 모델링한 브러시리스 직류전동기의 시뮬레이션을 통해 제안하는 전동기의 구동방식을 적용하는 경우에 기존의 구동방식에 비해 전동기 입력측 전압파형 개선과 고조파 및 토크리플이 현저히 저감되는 결과를 확인할 수 있었다.
In order for the probe to perform ocean exploration and survey research, it is necessary to adjust the position of the ship as desired by dynamic positioning system. The dynamic positioning system of T/S NARA is applied to K-POS dynamic positioning system of Kongsberg, which makes maintaining the ship's position, changing position and heading control possible. T/S NARA is not capable of dynamic positioning if one or more propulsive forces are lost with DP Level One. However, it is predicted that dynamic positioning can be achieved even at the time of missing one thrust in a good sea condition. Therefore, we want to analyze the effect of each propulsion on the performance of dynamic position system. When one of the bow thruster and azimuth thrusters lost their propulsion, maintaining the ship's position, changing position and heading control performance were compared and analyzed. If the situation occurred disable from using the bow thruster, they can not maintain ship's position. Azimuth thruster was influential for the ship's position control and bow thruster was influential in heading control. The excellent dynamic positioning performance can be achieved, considering the propulsion power that will have a impact on each situation in the future.
In this study, electric propulsion leisure boat with 9 meters length is designed and the performances are investigated by CFD analysis and model test. Maximum speed of the developed boat is 15knots(7.7 m/s) using 80Kw electric motor. Catamanan type hull form with slender body is adopted considering high Froude number and large deck area. Two kinds of hull forms are designed and the performances are compared in resistance point of view. Wave patterns are observed to make clear the relationship between resistance performance and wave characteristics. The results show that not only wave interaction due to shoulder waves but also stern waves have a strong influence on resistance performance and CFD analysis including free surface can give useful informations at initial ship design stage for high Froude number catamaran boat.
In this study, a new designed propeller was applied on 24 ton class squid jigging vessel to reduce of fuel consumption. The selected squid jigging boat was under construction at the shipyard to determine the resistance of the hull through the model experiment. The propeller design was carried out by using the experimental data and ITTC procedures. Sea trials were performed by measuring the speed and the horsepower required by the condition of five power levels of engine load, namely 70%, 80%, 90%, MCR and maximum engine power. The speed and delivered horse power were compared between the conventional propeller and the new design propeller. Delivered horse power by installing the new propeller takes 90% engine load at start-up conducted by decreased 9.06%. The measuring speed is increased up to the 0.6 knots in the low-speed range to high range. This study showed that only the design and installation of a new propeller can improve the propulsion efficiency of the boats; furthermore, reduce fuel costs can be achieved at the same time by improving the increased cruising speed.
최적의 선박 운항 항로를 찾기 위해서는 선박의 정확한 추진성능을 추정하는 것이 매우 중요하다. 본 논문은 선박 최적운항시스템 의 추진성능 데이터베이스를 생성하기 위한 전산프로그램의 개발에 대해 기술하고 있다. 실해역에서의 추진성능은 표류와 표면 거칠기 등 선 체 상태뿐 만 아니라 파랑과 바람 등 해상 상태의 영향을 받는다. 이 부가저항 추정 방법들은 ISO 15016:2002 표준의 실선 속력시운전 해석법 을 근간으로 하고 있으며, 추가로 바람과 선체 표면 거칠기에 대한 몇 가지 추정 방법이 보완되었다. 이 추정 방법들은 종합적인 전산프로그 램으로 만들어졌다. 그리고 향후 최적 운항경로 계산에 활용될 쇄빙연구선 아라온 호에 대해서 데이터베이스 계산이 수행되었다. 이 프로그램 은 모든 선박의 항로 최적화 계산에 유용하게 사용될 수 있을 것으로 판단된다.
Recently, there is a tendency to design the large full ships with lower-powered engine as the means for energy saving in ship's navigation at seas. Such a lower-powered ship is anticipated to show the different propulsive performance in rough seas, because the fluctuation of main engine load of lower powered ship is relatively large as compared with higher-powered ship is relatively large as compared with higher-powered ship. The fluctuation of propeller load is nonlinear at racing condition in waves. It is due to the variation of inflow velocity into propeller, the propeller immersion and the characteristics of engine governor. In this paper, the theoretical calculation of the nominal speed loss and the numerical simulation for the nonlinear load fluctuation of a model ship in rough seas are carried out. From the results of calculation, the following are discussed. (1) The ratio of nominal speed loss to the speed in still water. (2) The manoeuvring ability of ship and the operational ability of main engine in a seaway. (3) A method of the evaluation for the fluctuation of propeller torque and revolution on the engine characteristics plane. (4) The effect of engine governor characteristics on the propeller load fluctuation.