검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 10

        1.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : This study provides fundamental information on the temperature variations in tunnel structures during severe fire events. A fire event in a tunnel can drastically increase the internal temperature, which can significantly affect its structural safety. METHODS : Numerical simulations that consider various fire conditions are more efficient than experimental tests. The fire dynamic simulator (FDS) software, based on computational fluid dynamics (CFD) and developed by the National Institute of Standards and Technology, was used for the simulations. The variables included single and multiple accidents involving heavy goods vehicles carrying 27,000 liters of diesel fuel. Additionally, the concrete material characteristics of heat conductivity and specific heat were included in the analysis. The temperatures of concrete were investigated at various locations, surfaces, and inside the concrete at different depths. The obtained temperatures were verified to determine whether they reached the limits provided by the Fire Resistance Design for Road Tunnel (MOLIT 2021). RESULTS : For a fire caused by 27,000 liters of diesel, the fire intensity, expressed as the heat release rate, was approximately 160 MW. The increase in the carrying capacity of the fire source did not significantly affect the fire intensity; however, it affected the duration of the fire. The maximum temperature of concrete surface in the tunnel was approximately 1400 ℃ at some distance away in a longitudinal direction from the location of fire (not directly above). The temperature inside the concrete was successfully analyzed using FDS. The temperature inside the concrete decreased as the conductivity decreased and the specific heat increased. According to the Fire Resistance Design for Road Tunnel (MOLIT 2021), the internal temperatures should be within 380 ℃ and 250 ℃ for concrete and reinforcing steel, respectively. The temperatures were found to be approximately 380 ℃ and 100 ℃ in mist cases at depths of 5 cm and 10 cm, respectively, inside the concrete. CONCLUSIONS : The fire simulation studies indicated that the location of the maximum temperature was not directly above the fire, possibly because of fire-frame movements. During the final stage of the fire, the location of the highest temperature was immediately above the fire. During the fire in a tunnel with 27,000 liters of diesel, the maximum fire intensity was approximately 160 MW. The capacity of the fire source did not significantly affect the fire intensity, but affected the duration. Provided the concrete cover about 6 cm and 10 cm, both concrete and reinforcing steel can meet the required temperature limits of the Fire Resistance Design for Road Tunnel (MOLIT 2021). However, the results from this study are based on a few assumptions. Therefore, further studies should be conducted to include more specific numerical simulations and experimental tests that consider other variables, including tunnel shapes, fire sources, and locations.
        4,200원
        3.
        2016.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES: This paper investigates behavior and performance of concrete pavement in tunnel based on temperature data from field. METHODS : In this study, there are 4 contents to evaluate concrete pavement in tunnel, First, Comparison for distress was conducted at outside, transition, and inside part of tunnel. Secondly, temperature data was collected in air and inside concrete pavement in outside and inside tunnel. Thirdly, FEM analysis was performed to evaluate stress condition, based on temperature data from field. Finally, performance prediction was done with KPRP program. RESULTS: From the distress evaluation, failure of inside tunnel was much less than it of outside tunnel, Temperature change in tunnel was less than out side, and also it was more stable. According to result of FEM analysis, both curling stress status of inside tunnel was lower than it of outside tunnel. Based on KPRP program analysis, performance of inside tunnel was longer than outside. CONCLUSIONS : Through all study about behavior and performance of concrete pavement in tunnel, condition in tunnel has more advantages from environmental and distress point of view. Therefore, performance of inside tunnel was better than outside.
        4,000원
        6.
        2014.04 서비스 종료(열람 제한)
        Recently, a lot of problems have occurred in the tunnel by low-temperature freezing phenomenon in winter. Icicles caused by low-temperature freezing phenomenon has caused tunnel maintenance and traffic accident possibility. Therefore, in the study it is analyzed that a case of tunnel freezing occurred in the past
        7.
        2012.07 KCI 등재 서비스 종료(열람 제한)
        본 연구는 콘크리트의 열전도 역문제의 해를 통해 온도의존적 열전도도를 추정하는 방법을 제안하였다. 온도의존적 열전도도의 추정은 실물모형 화재실험에서 측정된 하이브리드 섬유보강 쉴드터널 라이닝의 시간 및 깊이별 온도분포 데이터를 이용하였다. 추정된 온도의존적 열전도도는 실험시간이 짧은 시점에서는 상온 영역에서 열전도도의 급격한 감소가 나타나는 것으로 추정되었다. 반면 깊이 25mm 위치에서 최대온도가 측정된 실험시간대에서는 온도에 따른 콘크리트의 특성변화 및 강섬유 혼입 효과를 반영하고 있다. 따라서 온도의존적 열전도도 추정 시 가열면 부근에서 최대온도가 측정된 시점을 기준으로 실험시간을 결정해야 한다. 추정된 열전도도는 유사배합을 사용한 기존연구와 유사한 결과를 나타내고 있다.
        8.
        2010.09 KCI 등재 서비스 종료(열람 제한)
        터널에서 외기에 접촉되는 부분은 입, 출구부와 환기구가 있으며 이러한 부위의 열화와 그 진행속도는 외기의 영향을 받지 않는 구간과는 다른 차이를 보여준다. 실제로 터널에서 외기에 접촉되는 부분뿐만 아니라 외기의 영향을 받는 구간은 일반적인 구간과는 다른 관점에서 접근해야 할 필요가 있고 보수나 보강공법 적용시에도 우선 고려가 되어야 한다. 그럼에도 불구하고 터널의 유지관리시, 점검 및 정밀안전진단시 외부온도의 영향을 받는 구간의 결함 및 열화는 그 범위가 광범위함에도 불구하고 구조체의 안전성에 미치는 영향이 미소하다는 이유로 소홀히 되고 있는 실정이며 일시적인 계절영향, 온도 변화요인에 의한 것으로 판단하여 특별한 관리가 되지 않고 있는 실정이다. 이에 본 논문은 외부온도, 기온의 터널내 영향범위를 산출하기 위해 2개소의 도심지 터널에 대해서 적외선 열화상카메라를 활용하여 터널내의 외부온도 영향범위를 결정하고 그 영향범위에서 발생되는 콘크리트라이닝 또는 콘크리트 구조체의 결함 및 열화원인을 분석하고 유지관리시 중점을 두고 시행해야 할 사항을 제시하였다.
        9.
        2010.05 KCI 등재 서비스 종료(열람 제한)
        본 연구에서는 철도터널내 화재시 터널내 구조체의 내화성능을 평가하기 위한 시간-온도곡선의 기준을 제시하고자 실시하였다. 현재 국내에서는 철도터널건설과 터널의 수가 빠른 속도로 증가하고 있으며, 터널연장이 길어짐에 따라 터널 내 화재사고가 갈수록 높아지고 있는 상황이다. 철도터널의 화재빈도수는 적지만 화재시 인명과 교통차단으로 인한 사회적 피해는 막대하다. 하지만 우리나라에서는 철도터널 화재에 대한 적합한 시간-온도 곡선을 규정하지 못하고 있는 실정이다. 따라서 본 연구에서는 국내 철도의 통행량, 차량 종류 등을 고려한 열방출율을 기초로 외국에서 제시된 시간-온도 곡선을 검토해 보았으며 국재 실정에 가장 적합한 설계화재 모델을 제시하였다. 탄화수소(HC)시간-온도 곡선이 국내 철도터널의 설계화재모델로 가장 적합하였으며, 탄화수소 시간-온도곡선에 의한 철도터널 구조체의 온도분포를 예측하기 위하여 유한요소해석을 통하여 콘크리트터널 구조체의 구조성능을 검토하였다.
        10.
        2010.05 KCI 등재 서비스 종료(열람 제한)
        본 연구는 도시철도 터널내 화재시 구조체의 내화성능을 평가하기 위한 기준을 제시하고자 실시하였다. 현재 국내 도심의 지하철 터널 구간은 135㎞로써 그 규모가 세계 4위 이며 대도시들의 도시철도 터널건설의 증가와 그 연장이 길어짐에 따라 터널 내 화재사고가 갈수록 높아지고 있는 상황이다. 하지만 국내에는 도시철도 터널 화재에 대한 내화성능평가에 기본적으로 적용되는 시간-온도 곡선이 없다. 따라서 본 연구에서는 국내 도시철도 터널의 통행량, 차량 종류 등을 고려한 열방출율을 기초로 외국에서 제시된 시간-온도 곡선을 검토하였으며 국내 실정에 맞는 설계화재 모델을 제시하였다. 또한 제시된 설계화재모델에 대해 수치해석을 통하여 화재시 도시철도 터널 구조체의 온도분포를 산정하였다.