In the field of length, a gauge block is one of the representative gauges used as a standard for length. The main management items of the gauge block are central length, flatness, parallelism, hardness, and surface by visual inspection. The surface of the gauge block may wear over time due to repeated wringing. This phenomenon may deteriorate the precision accuracy and affect the reliability of the measurement results. In this study, the parameters of the surface roughness of the gauge blocks used repeatedly for about 10,000 hours were analyzed. The paired t-test of population mean difference was compared by using the gauge block that has changed over the years as a preliminary experiment and the gauge block with little frequency of use for less than 1 year as the reference value.
The Kingery-Bulmash equation is the most common equation to calculate blast load. However, the Kingery-Bulmash equation is complicated. In this paper, a modified equation for surface blast load is proposed. The equation is based on Kingery-Bulmash equation. The proposed equation requires a brief calculation process, and the number of coefficients is reduced under 5. As a result, each parameter obtained by using the modified equation has less than 1% of error range comparing with the result by using Kingery-Bulmash equation. The modified equation may replace the original equation with brief process to calculate.
The blast load is classified into free-air blast and surface blast following the location of explosion and surface. In this paper, several equations for blast load calculation are explained briefly and a modified equation for free-air blast load is suggested. The modified equation is based on Kingery-Bulmash equation which is used in UFC 3-340-02 and Conwep model. In this modified equation, the process of calculation is simplified against the original equation, and the number of coefficients is reduced under 5. As a result, each parameter of estimated data by modified equation has less than 1% of error range comparing with Kingery-Bulmash equation.
The rheological properties of complex materials such as colloid dispersion show complicated non-Newtonian flow phenomena when they are subjected to shear flow. These flow properties are controlled by the characteristics of flow units and the interactions among the flow segments. The rheological parameters of relaxation time (β2)0, structure factor C2 and shear modulus X2/α2 for various thixotropic flow curves was obtained by applying thixotropic equation to flow curves. The variations of rheological parameters are directly related to non-Newtonian flows, viscosities and activation energies of flow segments.
본 연구는 지진위험도 산출에서 불확실성을 줄이는 한 방법으로서 지진위험도 계산에 입력되는 파라미터들(a, b값, Mmax, 감쇠식 및 지진지체구조)이 지진위험도 값에 어느 정도로 영향을 미치는지 민감도를 분석하고자 하였다. 이를 위해 지진 전문가 10명이 제시한 입력자료를 사용하였다. 그 결과 a값, Mmax값이 커질수록 PGA값이 증가하였으며, b값은 작아질수록 PGA값이 커졌다. 가장 큰 영향을 미치는 파라메타는 감쇄식, b값 및 a값이며, Mmax와 지진지체구조구 모델의 영향은 상당히 적었다. 따라서 영향이 큰 파라메타에 대해서는 한반도의 지진학적 특성에 적합한 값의 산출이 요구된다.
Stainless steel sheets are widely used as the structure material for the railroad cars and the commercial vehicles. These kinds structures used stainless steel sheets are commonly fabricated by using the gas welding. For fatigue design of gas welded joints such as fillet and plug and ring type joint, it is important to obtain optimum design parameter information on gas welded joints. In this paper, analysis approach for fatigue test using experimental design are evaluated optimum factor in gas welded joint type and geometrical parameters of materials. Using these results, that factors applied to fundamental information for fatigue design.
It is well known that the membrane permeation in pervaporation is governed by both the chemical nature of the membrane material and the physical structure of the membrane and also the separation can be achieved by differences in either solubility, size or shape. The solubility of the penerrant in the polymeric membrane can be described qualitively by applying the Hildebrand relation [1] which relates the energy of mixing of the penerrant and the polymer material. Froehling et al. have tried to predict the swelling behavior of polymers for the systems of polyvinylchloride(PVC)-toluene-methanol, PVC-trichloroethylene-nitromethane and PVC-n-butylacetate-nitromethane[2]. The former two systems which do not show the donor/acceptor interactions upon mixing showed the successful results[2]. In addition to this technique, there are several other possible approaches to predict the swelling behaviors of polymers, such as the surface thermodynamic approach[3, 4], the comparison of the membrane polarity with the solvent polarity in terms of Dimroth's solvent polarity value[5].
현재 최신 장비의 두부 CT검사에서 파라메타의 변화와 선량변화에 대한 연구가 부족하고 특히 노이즈, 균일도 해석 및 선량변화에 대한 연구가 부족하다고 생각된다. 따라서 높은 사양 두부 CT 사용 시 노출 파라메타 중 관전압, 슬라이스 두께, 피치변화에 대해 분석하여 이때 발생하는 현상에 대해서 연구하고자 하였다. 실험을 통해서 균일도는 고관전압과 두꺼운 슬라이스 선택 및 최저 피치를 사용할 때 균일도가 좋음을 알 수 있었다. 모두 조합한 결과 균일도가 가장 조건은 140 kVp, 10 mm, pitch 0.5로 나타났다. 노이즈는 관전압과 슬라이스 두께를 높이면 피치에 관계없이 개선되는 것을 알 수 있었고, 선량은 관전압과 피치의 증가에 따라 선형적으로 증가하는 것으로 나타났다. 따라서 본 연구결과는 고 사양의 두부 CT 사용에서 참고자료가 될 것이다.
At this paper two types of initial shapes and loads are introduced, and we assume that the initial shapes and loads are defined by sinusoidal functions. Under this assumption the asymptotical stability of the solutions is established by investigating the eigenvalues of the characteristic polynomial of the system. The exact solution is obtained when the initial shape and the load are given by a linear combination of sinusoidal functions. The asymptotic stability of the arch is completely analysed.
In order to make use of the protection effect against wind by the vegetation, it examined whether it should make what vegetation form and arrangement using the 2-dimensional non-hydrostatic model. When the foliage shielding factor increases, it becomes hard to take in protection effect against wind in a residential section. When it makes height of vegetation high, it becomes hard to take in protection effect against wind with height. In the comparison in the case where vegetation high is gradually made low toward wind-stream from a vegetation, and the case of making it low gradually, although former tends to receive the protection effect against wind by the vegetation, attenuation of wind velicity becomes large. In the comparison in the case where foliage shielding factor and distribution of density of leaf are gathered gradually toward wind-stream from a vegetation. It has been understood to evaluate to height the influence that the vegetation multi-layer model by which the heat revenue and expenditure in the direction of the vegetation height is considered is used, and to characterize the vegetation group by the parameter setting.