검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 8

        2.
        2019.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        A flexible piezoelectric energy harvester(f-PEH) that converts tiny mechanical and vibrational energy resources into electric signals without any restraints is drawing attention as a self-powered source to operate flexible electronic systems. In particular, the nanocomposites-based f-PEHs fabricated by a simple and low-cost spin-coating method show a mechanically stable and high output performance compared to only piezoelectric polymers or perovskite thin films. Here, the non-piezoelectric polymer matrix of the nanocomposite-based f-PEH is replaced by a P(VDF-TrFE) piezoelectric polymer to improve the output performance generated from the f-PEH. The piezoelectric hybrid nanocomposite is produced by distributing the perovskite PZT nanoparticles inside the piezoelectric elastomer; subsequently, the piezoelectric hybrid material is spin-coated onto a thin metal substrate to achieve a nanocomposite-based f-PEH. A fabricated energy device after a two-step poling process shows a maximum output voltage of 9.4 V and a current of 160 nA under repeated mechanical bending. Finite element analysis(FEA) simulation results support the experimental results.
        4,000원
        3.
        2013.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Ti2AlN composites are a laminated compounds that posses unique combination of typical ceramic proper- ties and typical metallic(Ti alloy) properties. In this paper, the powder synthesis, SPS sintering, composite characteristics and machinability evaluation were systematically conducted. The random orientation characteristics and good crystalli- zation of the Ti2AlN phase are observed. The electrical and thermal conductivity of Ti2AlN is higher than that of Ti6242 alloy. A machining test was carried out to compare the effect of material properties on micro electrical discharge drilling for Ti2AlN composite and Ti6242 alloy. Also, mixture table as a kind of tables of orthogonal arrays was used to know how parameter is main effective at experimental design. Consequently, hybrid Ti2AlN ceramic composites showed good machining time and electrode wear shape under micro ED-drilling process. This conclusion proves the feasibility in the industrial applications.
        4,000원
        4.
        2019.10 서비스 종료(열람 제한)
        The purpose of this study was to evaluate the tensile fracture energy absorption capacity of hybrid fiber reinforced cement composite by strain rate. Experiment result, it was confirmed that PVA suppressed the microcrack around the HSF at the strain rate 101/s, which resulted in the improvement of the pullout resistance of the HSF.
        5.
        2019.04 서비스 종료(열람 제한)
        The purpose of this study was to evaluate the direct tensile fracture behavior of steel fiber hybrid reinforced cement composite by strain rate. Experiment result, it was confirmed that SSF suppressed the microcrack around the HSF at the strain rate 101/s, which resulted in the improvement of the pullout resistance of the HSF.
        6.
        2018.04 서비스 종료(열람 제한)
        The purpose of this study was to evaluate the direct tensile fracture behavior of fiber hybrid reinforced cement composite by strain rate. Experiment result, it was confirmed that PVA suppressed the microcrack around the steel fiber at the strain rate 101/s, which resulted in the improvement of the pullout resistance of the steel fiber.
        7.
        2017.12 KCI 등재 서비스 종료(열람 제한)
        In this study, the fiber blending ratio and strain rate effect on the tensile behavior of hybrid fiber reinforced cement composite was evaluated. Hooked steel fiber and polyvinyl alcohol fiber were used for reinforcing fiber. The fiber blending ratio of HSF+PVA were 1.5+0.5, 1.0+1.0 and 0.5+1.5vol.%. As a results, the tensile strength, strain capacity and fracture toughness of the hooked steel fiber reinforced cement composites were improved by the increase of the bond strength of the fiber and the matrix according to increase of strain rate. However, the tensile stress sharply decreased after the peak stress because of the decrease in the number of straightened pull-out fibers by micro cracks in the matrix around hooked steel fiber. On the other hand, PVA fiber showed cut-off fracture at strain rate 10-6/s with multiple cracks. However, at the strain rate 101/s, the multiple cracks and strain capacity were decreased because of the pull-out fracture of PVA fiber. The HSF1.5PVA0.5 shown the highest tensile strength because the PVA fiber suppressed the micro cracks in the matrix around the hooked steel fiber and improved the pull-out resistance of hooked steel fiber. Thus, DIF of strain capacity and fracture toughness of HSF1.5PVA were greatly improved. In addition, the synergistic response of fracture toughness was positive because the tensile stress was slowly decreased after the peak stress by improvement of the pull-out resistance of hooked steel fiber at strain rate 101/s
        8.
        2017.09 서비스 종료(열람 제한)
        The purpose of this study was to evaluate the tensile fracture behavior of fiber hybrid reinforced cement composite according to the strain rate. Experiment result, it was confirmed that the number of cracks and the strain capacity tended to decrease with increasing PVA fiber volume fraction at the strain rate of 101/s.