PURPOSES : When fire event occurs in tunnel the reinforced concrete is exposed to very high temperature at a very short time period. This study investigates the tensile behavior of steel rebar that experienced high temperature.
METHODS : The steel rebar was exposed to 200, 400, 600, and 800℃ following the ISO 834 temperature-time fire curve. Hightemperature- exposed steel rebars were tested using the UTM for their yielding and tensile strengths, and elongation rate.
RESULTS : Up to an exposure temperature of 600℃, the tensile properties of the rebar did not vary considerably. However, at 800℃ (which corresponds to a temperature rise time of approximately 22 min), the rebar lost its yielding and tensile strength by approximately 27 and 13%, respectively, compared to the control specimen. Further, the elongation rate increased after exposure to 600℃. The above fundamental tensile test results can be a good reference for future guidelines in the repair manual for tunnels after severe fire events.
CONCLUSIONS : When steel rebar experiences high temperatures of 800℃, the yield strength of the rebar reduces approximately 27%. This strength reduction can cause severe structural damage to tunnels that use reinforced concrete as the primary structural elements.
There have been more than 40,000 cases of fires in Korea in the last three years. However, as ‘Accidental Fire Liability Act’ was judged to be non-conform to the Constitution in 2007, the damages by light mistakes should be compensated. Accordingly, disputes such as compensation claims, litigations and indemnification cases of the victims of fire increased. However, it is so difficult for victims of fire cases to take proper action. So, this study is to help victims of fire cases in the disputes and compensation claims of the victims, and to find actual and practical support system based on the analysis of compensation status. To help victims of fire cases, we need to survey about victims of fire cases with multiple victims. That survey is analyzed to find support plan for victims. Furthermore, to find support plan the current law is needed to be analyzed and reviewed to revision. It is also tried to identify problems in the operation of the Center for victims of Fire currently operated by fire stations and to find countermeasures. In addition, the status of subscription and problem of fire insurance for the compensation for the victims and the method to increase fire insurance subscription rate will be studied.
본 연구에서는 LNG 공급계통시스템의 재기화 공정에서 배관 손상으로 인한 누출사고 발생시 LNG 성분 및 누출공의 크기에 따른 연소특성에 대한 피해범위를 산출하고, 피해영향을 해석하였다. LNG 성분에 따른 연소특성을 확인하기 위하여 7곳의 LNG 산지별 위험도를 확인한 결과 산지별 큰 차이를 보이지 않았으나, LNG 구성성분 중 메탄의 함유량이 많을수록 플래시화재 발생범위 및 증기운 폭발에 의한 과압이 발생하는 위험범위 그리고 제트화재 발생에 의한 열 복사량 피해영향이 다른 산지에 비해 비교적 낮음을 알 수 있었다. 또한 배관 누출공의 크기에 따라 누설, 파공, 파괴 3단계에 나누어 위험 범위 및 폭발에 미치는 영향에 대한 연구를 수행하였으며, 플래시화재로 인한 피해영향범위를 계산하고, 이에 따라 LNG 누출시 화재가능 위험범위를 확인했으며, 과압의 영향 및 복사열로 부터의 피해범위를 예측할 수 있었다. 이를 통해 LNG 조성 및 배관 누출공의 크기가 화재 및 폭발에 미치는 영향을 예측할 수 있었다.
본 연구에서는 고온 가열된 시멘트 페이스트에 나타나는 균열을 CO2 가스 노출을 통한 회복 거동에 대해 관찰하였다. 시 험체는 W/C 40 %의 시멘트 페이스트로 설정하였다. 전기가열로를 목표온도까지 도달시킨 후 가열로 상부에 부착하여 일면 가열을 실시한 후 가열된 면에 나타난 균열을 고배율 카메라로 촬영하였다. 촬영결과 CO2 가스 노출을 통한 회복 재령으로 인하여 시멘트 페이스트의 균열이 더 이상 진행되지 않은 것을 관찰하였다.
The purpose of this study is to assess a fire-damaged concrete structure using a digital camera and image processing software. To simulate it, mortar and paste samples of W/C=0.5(general strength) and 0.3(high strength) were put into an electric furnace and simulated from 100 ℃ to 1000 ℃. Here, the paste was processed into a powder to measure CIELAB chromaticity, and the samples were taken with a digital camera. The RGB chromaticity was measured by color intensity analyzer software. As a result, the residual compressive strength of W/C=0.5 and 0.3 was 87.2 % and 86.7 % at the heating temperature of 400 ℃. However there was a sudden decrease in strength at the temperature above 500 °C, while the residual compressive strength of W/C=0.5 and 0.3 was 55.2 % and 51.9 % of residual strength. At the temperature 700 ℃ or higher, W/C=0.5 and W/C=0.3 show 26.3% and 27.8% of residual strength, so that the durability of the structure could not be secured. The results of L*a*b color analysis show that b* increases rapidly after 700 ℃. It is analyzed that the intensity of yellow becomes strong after 700 ℃. Further, the RGB analysis found that the histogram kurtosis and frequency of Red and Green increases after 700 ℃. It is analyzed that number of Red and Green pixels are increased. Therefore, it is deemed possible to estimate the degree of damage by checking the change in yellow(b* or R+G) when analyzing the chromaticity of the fire-damaged concrete structures.
The current fire-damage inspection and safety diagnosis has not developed from the labour and time-consuming method. Data collected through traditional safety inspection and survey methods are less quantitative and causes irregularity to the database; thus data becomes impractical for long-term maintenance and analysis. Data by 3D Scanning are more precise and quantitative in calculating the damages by a fire, the amount to repair and reinforce; furthermore, in evaluating the safety of the structure.
The purpose of study is to investigate properties of high strength concrete in fire. Composite fibers that are mixed in concrete are used to improve vulnerable point. The role of each fiber is to prevent of spalling effect and improve of flexural strength.
Concrete structures known that relatively safe for the fire, but the fire damage at different depending on the materials used will be affected, depending on the strength of the concrete damage situation appears different. In this study compared to compressive strength properties acooding to different type of concrete strength fire damege through about concrete structure is utilized as a basis for maintenance.
기존 연구에서 살펴보면, 철근콘크리트구조물에 발생한 화재로 인해 경화된 시멘트 페이스트와 골재의 수축과 팽창의 차이에 따라 조직이 와해되고, 열응력에 의해 균열이 발생하여 내구성이 저하한다. 그래서 성능저하의 정확한 진단은 일반적인 콘크리트구조물에서 방화성능저하의 매커니즘에 관한 기초가 요구되며, 고온에 노출된 콘크리트의 특성에 대한 기초 정보와 데이터는 성능저하의 정확한 진단을 위해 필요하다. 따라서, 본 연구는 다양한 콘크리트 시험체를 제작하여, 고온 환경에서 노출시켜, 폭열을 관찰하고, 공학적인 특성을 평가함으로서 화재피해를 입은 콘크리트구조물 성능저하의 빠르고 정확한 진단을 위한 기초적인 데이터를 제공하고자 한다.