PURPOSES : This study aimed to perform real-time on-site construction volume management by using Internet of things (IoT) technology consisting of 3D scanning, image acquisition, wireless communication systems, and mobile apps for new and maintenance construction of concrete bridge deck overlays. METHODS : LiDAR was used to scan the overlay before and after construction to check the overlay volume. An enhanced inductively coupled plasma (ICP) method was applied to merge the LiDAR data scanned from multiple locations to reduce noise, and an anisotropic filter was applied for efficient three-dimensional shape modeling of the merged LiDAR data. The construction volume counter of the mobile mixer was directly photographed using an IP camera, and the data were transmitted to a central server via the LTE network. The video images were transmitted to the central server and optical character recognition (OCR) was used to recognize the counter number and store it. The system was built such that the stored information could be checked in real time in the field or at the office. RESULTS : As a result of using LiDAR to check the amount of overlay construction, the error from the planned amount was 0.6%. By photographing the counter of the mobile mixer using an IP camera and identifying the number on the counter using OCR to check the quantity, the results showed that there was a 2% difference from the planned quantity. CONCLUSIONS : Although the method for checking the amount of construction on site using LiDAR remains limited, it has the advantage of storing and managing the geometric information of the site more accurately. Through the IoT-based on-site production management system, we were able to identify the amount of concrete used in real time with relative accuracy.
In the contemporary era, 3D printing technology has become widely utilized across diverse fields, including biomedicine, industrial design, manufacturing, food processing, aerospace, and construction engineering. The inherent advantages of automation, precision, and speed associated with 3D printing have progressively led to its incorporation into road engineering. Asphalt, a temperature-responsive material that softens at high temperatures and solidifies as it cools, presents distinctive challenges and opportunities in this context. For the effective implementation of 3D printing technology in road engineering, 3D printed asphalt (3DPA) must exhibit favorable performance and printability. This requires attributes such as good fluidity, extrudability, and buildability. Furthermore, materials utilizing 3DPA for crack repair should possess high viscosity, elasticity, toughness, superior high-temperature stability, and resistance to low-temperature cracking. These characteristics ultimately contribute to enhancing pavement longevity and ensuring worker safety.
As nuclear decommissioning ventures become increasingly complex, the role of digitalization in facilitating and enhancing these operations is becoming indispensable. This transition to a more digitized approach presents a myriad of advantages, including: augmented avenues for data acquisition, analysis, and visualization to bolster dismantling strategies; simulations in virtual environments for operator training; precise forecasting of future waste emergence, culminating in refined cost estimations; and more immersive decommissioning visualizations for both operators and external stakeholders. Salient benefits conferred by the integration of digital technologies in decommissioning encompass improved collaboration, enriched knowledge transfer, clarity regarding present technological constraints, insights into key influencing factors, clearer criteria for technology selection, and a profound understanding of the potential challenges and merits of a broader incorporation of digital tools in decommissioning endeavors. Of paramount importance is the opportunity presented for superior workforce training and safety measures, exemplified by ALARAbased planning. Amidst the myriad facets of digital adoption, 3D modeling of nuclear facilities derived from laser-scanned point clouds stands out as a pivotal domain in the digitalization. The transformation of intricate point cloud data into a comprehensible 3D mesh remains the crux of this paper. The process of mesh generation, despite being simpler than its counterpart of converting to a 3D solid model, is crucial for multiple reasons. The resultant 3D mesh offers an enhanced visual representation compared to a sparse point cloud, paving the way for improved spatial perception. Furthermore, it serves as a rudimentary tool for approximating component volumes and the ensuing waste, thereby playing an instrumental role in waste manipulation strategies, notably in collision detection. This paper delves deep into the nuances of mesh generation, conducting an parametric study of mesh conversion algorithms, including down-sampling rates. Through this rigorous examination, we endeavor to shed light on optimal methodologies, hoping to catalyze advancements in the digitalization of nuclear decommissioning processes.
Background: This study attempted a comparative analysis of three splint fabrication methods currently used in clinical fields. Traditional Orthotic Fabrication Method Utilizing Thermoplastic Resin, the Methodology for creating assistive devices using 3D scanner, commercial CAD software, and 3D printing technology, and the Fabrication Method of Arm Splint Based on XR (eXtended Reality) Algorithm. Objectives: The study recruited 12 undergraduate students majoring in physical therapy and occupational therapy who had sufficient knowledge of splints, with an equal gender distribution. The study randomized the participants and conducted the experiment and overall process using a stratified approach. Design: Clinical applied technology experiment Methods: The study used QUEST 2.0 (Quebec User Evaluation of Satisfaction with assistive Technology ver. 2.0) to survey standardization, weight, ease of use, safety, durability, usability, effectiveness, and patient satisfaction, and statistically analyzed all results as quantitative indicators. Results: The score of QUEST 2.0 showed different aspects in some items, and it is difficult to say that certain technologies are superior overall. Conclusion: The study attempted an intuitive interpretation of the results. Overall, it was concluded that the XR method, which allows for easy and fast fabrication, is likely to be more readily accepted in future clinical practice.
카메라 어레이와 사진측량(photogrammetry)을 이용한 3차원 스캐닝 기술은 인체 전신을 게임이나 시각효과 (VFX), 가상인간 등의 다양한 컴퓨터 그래픽스 응용 분야에 활용되고 있다. 특히 최근에는 메타버스 분야에 대한 구축이 활발해 지고 있는 추세여서 실제 인물에 대한 전신 스캔을 보다 저렴하게 수행할 수 있는 시 스템에 대한 요구가 증가하고 있다. 본 연구에서는 고가의 DSLR 카메라를 이용한 시스템보다 1/10정도의 가격으로 구축할 수 있는 시스템을 제작하는 사례를 제시하고자 한다. 인체 전신에 대해 동시촬영의 오차가 적은 시스템을 구축하는데 중점을 두었다. 최근의 컴퓨터 그래픽스 기술은 보다 사실적인 캐릭터를 보다 효 율적으로 생성하고 사용할 수 있는 방법으로 발전하고 있다. 따라서 본 시스템은 최근 다양한 연구와 개발 이 이루어지고 있는 메타버스의 캐릭터 구축이나 게임의 캐릭터의 모델링에 활용할 수 있는 장비로 활용될 수 있을 것으로 기대하며, 이러한 시스템을 좀 더 저비용으로 구축하고자 하는 연구자들이나 개발자들에게 도움이 될 수 있을 것으로 본다. 또한 최신의 실시간 렌더링 시스템의 추세와 삼각측량 관련 연구와 기술의 발전에도 기여할 수 있을 것으로 보인다.
The study purpose was to investigate the jacket-fit satisfaction level of men in their 20s and 30s, using body-scanning data and a questionnaire. Thirty-five men were scanned using a 3D body scanner. The participants were divided into three groups (Small, Medium, and Large) based on their chest-circumference measurement. Their levels of satisfaction with the fit of their tailored jacket were compared by group. Chest, waist, and hip circumferences increased substantially as group size increased. The M-group was mostly satisfied with all body-site views. The S-group was especially dissatisfied with height, back width, waist circumference, and upper-arm circumference. The L-group was especially dissatisfied with waist circumference and hip circumference. The majority of the participants preferred the jacket closely fitted to their body. More than half of the participants thought finding a jacket of suitable size was difficult. When purchasing ready-to-wear jackets, the S-group and the M-group considered shoulder width important, while the L-group considered chest circumference the most important area. When evaluating the fit of ready-to-wear jackets, the L-group evaluated chest circumference, back width, and waist circumference as poor fits. The M-group evaluated sleeve length and shoulder width as poor fits, and the S-group agreed with respect to sleeve length. Body-satisfaction levels and matching jacket-satisfaction levels differed by body-size group, as did areas that need improvement. The conclusion is that size-group analysis using 3D body scanning can be utilized effectively for jacket-fit analysis. The findings of the current study can be applied to improving jacket fit among young male consumers.
This study aimed to create 3D-printed insoles for flat-footed senior men using 3D systems. 3D systems are product-manufacturing systems that use 3-dimensional technologies like 3D scanning, 3D modeling, and 3D printing. This study used a 3D scanner (NexScan2), 3D CAD programs including Rapidform, AutoCAD, SolidWorks, Nauta+ compiling program, and a 3D printer. In order to create insoles for flat-footed senior men, we analyzed horizontal sections of 3D foot scans We selected 20 flatfooted and 20 normal-footed subjects. To make the 3D insole models, we sliced nine lines on the surface of the subjects’ 3D foot scans, and plotted 144 points on the lines. We calculated the average of these 3D coordinates, then located this average within the 3D space of the AutoCAD program and created 3D sole models using the loft surface tools of the SolidWorks program. The sole models for flat feet differed from those of normal feet in the depth of the arch at the inner sideline and the big toe line. We placed the normal-footed sole model on a flat-footed sole model, and the combination of the two models resulted in the 3D insole for flat feet. We printed the 3D modeled insole using a 3D printer. The 3D printing material was an acrylic resin similar to rubber. This made the insole model flexible and wearable. This study utilized 3D systems to create 3D insoles for flat-footed seniors and this process can be applied to manufacture other items in the fashion industry as well.
Unloading operation by the unloader is dependent on the experience of the operator in the cabin. If the operator receives information about the unloading situation in the process of lifting the bucket, it is possible to prevent the collision of the bucket with the ship structure. In recent years, numerous measurement systems have become available on the market for three-dimensional surveying of objects, but they are very expensive. This study presents a high quality, low cost 3D laser scanning system designed for object recognition. The developed 3D laser scanning system is built on the base of a 2D laser sensor by the extension with a servo motor and a rotation module. In order to evaluate performance of the developed 3D laser scanning system, the developed system was applied to scan a shape of hatch and cargo holder on a cargo ship. Experimental results showed that to obtain a 3D scanning data for the area around the hatch and cargo holder.
The current fire-damage inspection and safety diagnosis has not developed from the labour and time-consuming method. Data collected through traditional safety inspection and survey methods are less quantitative and causes irregularity to the database; thus data becomes impractical for long-term maintenance and analysis. Data by 3D Scanning are more precise and quantitative in calculating the damages by a fire, the amount to repair and reinforce; furthermore, in evaluating the safety of the structure.
The local displacement in the downstream of the embankment dam has been observed since the 2nd precise inspection was investigated. It appears that this displacement is caused by the differential settlement on the different properties of the zone during the construction. Therefore, using the advanced inspection method of the 3D scanning determines whether to proceed with the displacement. In this study, reviewing a field application and analyzing results of the 3D scanning method are drowned a conclusion for improvement in the inspection and maintenance method on the Rock-fill type embankment dam.
This paper presents that acquiring 3D-shape through reverse-engineering of the old facilities using 3D-Scanning method and suggesting means of enhancing old facilities management and replacement time for application of BIM. In the experiment, we use the equipment which is multi-laser 3D-Scanning to calculate the distance from objective to it. And then, we could get 3D-shape data for application of BIM which model more information of building. This BIM is taken advantage of prevention or prediction of risk by current facilities