검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 19

        1.
        2023.11 구독 인증기관·개인회원 무료
        Currently, non-volatile nuclides such as 94Nb, 99Tc, 90Sr, 55Fe, and 59/63Ni are used a sequential separation. In this study, we developed a separation for 99Tc and 90Sr by a carbonate precipitation. Sodium Carbonate (Na2CO3) was inserted in the aqueous sample from a Dry Active Waste (DAW) and a carbonate precipitation was produced. The precipitate is composed of di- or tri-valent element such as Co, Sr, Fe, Ni and the supernatant is composed of mono-valent element (Cs) and anion materials (ReO4 -, TcO4 -). In DAW, it was confirmed that the recovery of 90Sr (precipitate) and 99Tc (supernatant) were > 90%, respectively. The precipitate and supernatant separated by using a Sr-resin and an anion-exchange resin, respectively. The separated samples were measured by a Liquide Scintillation Counter (LSC, 90Sr) and Induced-Coupled Plasma-Mass Spectroscopy (ICPMS, 99Tc).
        2.
        2023.05 구독 인증기관·개인회원 무료
        A low- and intermediate-level radioactive waste repository contains different types of radionuclides and organic complexing agents. Their chemical interaction in the repository can result in the formation of radionuclide-ligand complexes, leading to their high transport behaviors in the engineered and natural rock barriers. Furthermore, the release of radionuclides from the repository can pose a significant risk to both human health and the environment. This study explores the impact of different experimental conditions on the transport behaviors of 99Tc, 137Cs, and 238U through three types of barrier samples: concrete, sedimentary rock, and granite. To assess the transport behavior of the samples, the geochemical characteristics were determined using X-ray diffraction (XRD), X-ray fluorescence (XRF), Fouriertransform infrared spectroscopy (FTIR), scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS), and Brunauer-Emmett-Teller (BET) analysis. The adsorption distribution coefficient (Kd) was used as an indicator of transport behavior, and it was determined in batch systems under different conditions such as solution pH (ranging from 7 to 13), temperature (ranging from 10 to 40°C), and with the presence of organic complexing agents such as ethylenediaminetetraacetic acid (EDTA), nitrilotriacetic acid (NTA), and isosaccharinic acid (ISA). A support vector machine (SVM) was used to develop a prediction model for the Kd values. It was found that, regardless of the experimental parameters, 99Tc may migrate easily due to its anionic property. Conversely, 137Cs showed low transport behaviors under all tested conditions. The transport behaviors of 238U were impacted by the order of EDTA > NTA> ISA, particularly with the concrete sample. The SVM models can also be used to predict the Kd values of the radionuclides in the event of an accidental release from the repository.
        3.
        2022.10 구독 인증기관·개인회원 무료
        According to the Nuclear Safety and Security Commission (NSSC) Notice No. 2021-26 “Delivery Regulations for the Low- and Intermediate Level Radioactive Waste (LILW)”, the activity of 3H, 14C, 55Fe, 58Co, 60Co, 59Ni, 63Ni, 90Sr, 94Nb, 99Tc, 129I, 137Cs, 144Ce, and gross alpha must be identified. Currently, the scaling factor of the dry active waste (DAW) for LILW is applied as an indirect evaluation method in Korea. The analyses are used the destructive methods and 55Fe, 60Co, 59Ni, 63Ni, 90Sr, 94Nb, 99Tc, and 137Cs, which are classified as nonvolatile nuclides, are separated through sequential separation and then measured by gamma detector, liquid scintillation counter (LSC), alpha/beta total counter (Gas Proportional Counter, GPC), and ICP-MS. We will introduce how to apply the existing nuclide separation method and improve the measurement method to supplement it.
        4.
        2022.10 구독 인증기관·개인회원 무료
        Radionuclides can be leached into groundwater or soil over a long period of time due to unexpected situations even after being permanently disposed of in a repository. Therefore, it is necessary to investigate the mobility of radionuclides for the safety assessment of radioactive waste disposal. In this study, the effects of organic complexing agents such as ethylenediaminetetraacetic acid (EDTA) and isosaccharinic acid (ISA) on the sorption behavior of 239Pu and 99Tc over cementitious (concrete and grout) and natural rock samples (granite and sedimentary rock) were investigated in batch sorption experiments. For characterization of rock samples, XRD, XRF, FT-IR, FE-SEM, BET, and Zeta-potential analyses were performed. For the evaluation of mobility, the distribution coefficient (Kd) was selected and compared. The adsorption experiment was carried out at two pHs (7 and 13), a temperature of 20°C, and a range of organic complexing agents concentrations (10-7~10-2 M and 10- 5~10-2 M for 239Pu and 99Tc, respectively). The radionuclides concentrations in adsorption samples were analyzed using ICP-MS. The Kd values for 239Pu in all rock samples reduced significantly due to the presence of EDTA, even at low concentrations such as 10-5 M. In the case of ISA, the limiting noeffect concentration was much higher than that of EDTA. On the other hand, 99Tc showed relatively lower Kd values than 239Pu, and the sorption behavior of 99Tc was almost unaffected by the organic complexing agents for all rock samples. Therefore, it is possible to assume that the increased mobility of radionuclides, especially, 239Pu, in groundwater caused by the lowering of sorption at even low concentrations of organic complexing agents may result in the transport of radionuclides to the nearand far-field location of the repository.
        5.
        2022.05 구독 인증기관·개인회원 무료
        Technetium-99 (99Tc) is a challenging radionuclide from presents many problems related to safe disposal. The measurement of 99Tc is of particular interest due to its high mobility, and the fact that it is a beta-emitter with a long half-life (t1/2=2.13×105 years) with long-term radiological effects[1]. As an isotopes of 99Tc, 99mTc has been widely applied for medical diagnosis and medical research. It is reported that the 99mTc has been used in 80% of diagnostic nuclear medicine procedures and almost 30 million examinations are conducted worldwide using this isotope. Because 99mTc has a short half-life of 6 h and decays to 99Tc, monitoring and safe disposal of 99Tc from human urine is very important, and concern is increasing every day as global use of 99mTc has increased by more than 4.5×1014 Bq per week and is increasing continuously[2]. However, the current methods for the detection of this radionuclide in such mdium are time consuming and can not satisfy for the low level urine sample analysis. In this work, a method for rapid determination of 99Tc in urine samples was developed. The sample was firstly pre-treated with K2S2O8 to decompose the organic matters combined with 99Tc in 0.5 mol·L−1 HNO3 medium at 100°C. Then the sample solution was loaded to a TEVA column (2 mL) for 99Tc separation and purification. The target element was finally measured by high resolution inductively coupled plasma mass spectrometry (HR-ICPMS). The developed analytical method was proved to be reliable and can be used to rapid determine low-level 99Tc in urine samples.
        6.
        2022.05 구독 인증기관·개인회원 무료
        99Tc is a long-lived radioactive fission product whose mobility in the subsurface is largely governed by its oxidation state. Migration of Tc from a waste repository may be prevented by immobilizing Tc(IV) in durable glass forms. Thus, efficient incorporation and high retention of Tc by glasses is very important for radioactive waste management and environmental remediation. Tc(IV) oxidation to higly volatile Tc(VII) (TcO4 −) at glass vitrification temperatures results in poor Tc retention in the final waste glass. Retention of Tc in the glass is generally improved by reducing conditions since Tc(IV) is not volatile. However, experiments with Tc-magnetite under high temperature and oxic conditions showed re-oxidation of Tc(IV) to volatile pertechnetate. To understand this phenomenon, we employed ab initio molecular dynamics simulations to study structural and electronic properties of Tc-incorporation in magnetite. The study provides the ramification of high temperature on Tc mobilization and changes of Tc retention in magnetite. Theory predictions also indicated enhanced Tc retention in the presence of 1st row transition metal dopants in Tc-incorporated magnetite that was confirmed by experiments. Furthermore, the overwhelming concentration of Cr(VI) co-mingled with Tc(VII) within the secondary waste form where Cr(VI) is more readily reduced than Tc(VII) by reduction potential metrics. Experiments with Tc-magnetite under high temperature and oxic conditions showed re-oxidation of Tc(IV) to volatile pertechnetate. Experiments also showed that magnetite transforms to maghematite resulting in disproportionation and re-oxidation of Tc. This transformation can be suppressed through incorporation of trace elements such as Co, Ni, Zn into magnetite forming spinel. In this talk, I will present results from ab initio molecular dynamics simulations and experiments on the structural and electronic properties of Tc and/or Cr incorporation in magnetite. I will also discuss the temperature effect on Tc/Cr mobilization and changes of Tc/Cr retention in magnetite. In addition, I will discuss the effect of Tc/Cr concentration and 1st row transition metal dopants on their incorporation in magnetite.
        7.
        2022.05 구독 인증기관·개인회원 무료
        Mechanism and kinetics of Rhenium complexes as a surrogate of Technetium-99 (99Tc) is worthy of study from radioactive waste safe disposal perspective. Re(IV)-EDTA was synthesized via the reduction of Re(VII) with Sn(II) in the presence of Ethylenediaminetetracetic acid (EDTA). The Re(IV)-EDTA was then degraded by H2O2 (7–30%) at pH of 3–11 in ionic strength I = 0–2 M solution. The Re- EDTA was observed to degrade more rapidly at pH of ≤ 3–4 than one of ≥ 10–11 and remained stable at pH = 7–9. At a low acidic pH, the complex degradation process was facilitated by protonation and corresponded to the exponential model (y = k. e–nt). In contrast, at an alkaline pH, the degradation was facilitated OH– complexation with Re(IV) and corresponded to a linear model (y = –mt + C). Complex degradation followed the zero-order rate kinetics for the H+ and Re-EDTA parameters, apart from a pH of 3, for which degradation was a better fit to first order kinetics. A higher Re(IV)-EDTA stability at a pH of 7–9 demonstrated that Re(IV)-EDTA (or 99Tc(IV)-EDTA) tends to be more persistent in natural environmental conditions.
        10.
        2018.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        As a rule, geological disposal is considered a safe method for final disposal of high-level radioactive waste. However, some long-lived fission products like 99Tc and 129I contained in spent nuclear fuel are highly mobile as less sorbing anionic species in the subsurface environment and can mainly cause exposure dose to the ecosystem by emission of beta rays in the hundreds of keV range. Therefore, if these two nuclides can be separated and converted with high efficiency into radioactively unharmful nuclides, this would have a positive effect on disposal safety. One candidate method is to transmute these two nuclides in nuclear reactors into short-lived nuclides or into stable nuclides. For this purpose, it is necessary to evaluate which reactor type is more efficient in burning these two nuclides. In this study, the simulation results of nuclear transmutation of 99Tc and 129I in light water reactor (PWR), heavy water reactor (CANDU) and fast neutron reactor (SFR, MET-1000) are compared and discussed.
        4,000원
        15.
        2013.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        논의 99Tc 오염 시 소석회와 유기질 비료의 토양 첨가가 쌀알 내 99Tc 농도 저감 대책으로서 유용한지 알아보기 위하여 온실 내에서 두 가지 논토양에 대해 포트실험을 수행하였다. 모내기 15 일 전에 약 20 cm 깊이에 해당하는 상부 토양을 상기 농용 물질과 99Tc로 처리하였다. 처리 효과는 토양 중 농도에 대한 작물체 내 농도의 비로 정의되는 전이계수(TF)로 비교하였다. 대조 작물체의 경우 두 토양에서 현미 TF 값은 4.1×10-4 및 4.3×10-4였다. 각종 유형의 첨가 중에서 한 토양에 대해 60%정도의 TF 값 감소를 나타낸 소석회 저수준 첨가(약 0.6 kg m-2)만이 대책으로서 이용 가능성이 있을 것으로 판단되었다. 다른 한 토양에서는 동 첨가의 효과가 거의 없었으므로 다수의 토양에 대한 평균적인 효과를 알아내는 것이 중요하다. 두 가지 다른 수준의 유기질 비료의 첨가는 모두 TF 값을 증가시켰다. 위보다 더 낮은 수준의 소석회 첨가에 대해 실험을 수행할 필요가 있을 것으로 사료되었다.
        4,000원
        19.
        2009.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        토양중 99Tc의 배경준위를 측정할 수 있는 분석법을 수립하고 한국 토양중의 99Tc농도를 비교 검토하였다. 토양중의 99Tc을 분리 정제하기 위해서 선택성 TEVA수지를 사용하였다. 화학분리 회수율을 계산하기 위해 99Mo/99mTc 생성기에서 생산한 99mTc를 추적자로 사용하고 그 문제점을 검토하였다. 99mTc추적자를 사용하여 계산한 화학분리 회수율은 70% 이상이 가능하였다. 순수 분리된 99Tc의 측정을 위한 유도결합프라스마 질량분석기(ICP-MS)의 최적 조건을 수립하였다. 이 분석법에 의한 토양의 최소검출하한치(MDA)는 15mBq/kg-dry 이었다. 제주와 고리 주변 토양 시료의 99Tc 농도는 33.73 - 89.16 mBq/kg-dry 였다. 이러한 수치는 다른 보고치에 비하여 낮은 편이며 대기권 핵실험에서 기인한 낙진의 영향으로 추정된다.
        4,000원