본 연구는 가치기반수용모델을 바탕으로 AI 기반 맞춤형 화장품 추천 서비스의 지각된 가치와 이용의도에 미치는 영향 요인을 규명하고자 하였다. 이를 위해 설문지 241부를 수집하여 SPSS 27.0으로 빈도분석, 요인분석, 신뢰도 분석, 상관관계분석, 회귀분석을 실시하였다. 첫째, 유용성과 즐거움은 지각된 가치에 정(+)적 영향을 미치는 것으로 나타났다. 둘째, 복잡성은 지각된 가치에 부(-)적 영향을 미치는 것 으로 나타났으나, 위험성은 유의한 영향을 미치지 않는 것으로 나타났다. 셋째, 지각된 가치는 이용의도에 정(+)적 영향을 미치는 것으로 나타났다. 그러므로 지각적 가치와 이용의도를 증진시키기 위해서는 유용한 정보롸 흥미를 유발할 수 있는 재미 요소를 제공하고, 복잡한 과정을 간단하게 축소할 필요가 있다.
본 연구는 초등학생들의 깊이 있는 학습을 위하여 AI 코스웨어를 활용한 개념기반 탐구수업의 통 합 모델을 교육공학적으로 개발하는데 목적이 있다. 이를 위하여 개념기반 교육과정 및 수업(CBCI)과 AI 코스웨어에 대한 문헌연구로 이론적 토대를 마련하고, AI 코스웨어 활용 개념기반 탐구수업의 통합 모델을 설계 및 개발하였다. 연구 결과는 다음과 같다. 첫째, AI 코스웨어 활용 개념기반 탐구수업의 모델을 진단분석, 전략설정, 수업설계(개념질문-과제탐색-과제해결-개념성찰), 전이촉진으로 명료화 하였다. 둘째, 패러다임 변화 이론에 따라, 통합 모델의 혁신 가능성을 평가하고 새로운 교육 패러다임 의 실질적인 적용 가능성을 통찰하였다. 이를 토대로 사례분석부터 모형구상, 모형숙의, 모형수정 과정 을 반복하며 통합 모델을 정교화하였다. 마지막으로, AI 코스웨어 활용 개념기반 탐구수업 연구에 참 여한 자문그룹과 워킹그룹을 심층 인터뷰하여 통합 모델의 설계-실행-생성 과정을 검토하고 교육과 정 및 수업의 적용과 실행을 위한 시사점을 도출하였다. 결론적으로, 본 연구는 AI 코스웨어와 개념기 반 탐구수업의 통합적인 방법론의 효과성을 확인하였으며, 향후 연구와 개발에 대한 지속적인 노력이 필요하다는 점을 시사한다.
Occurrence of process environment changes, such as influent load variances and process condition changes, can reduce treatment efficiency, increasing effluent water quality. In order to prevent exceeding effluent standards, it is necessary to manage effluent water quality based on process operation data including influent and process condition before exceeding occur. Accordingly, the development of the effluent water quality prediction system and the application of technology to wastewater treatment processes are getting attention. Therefore, in this study, through the multi-channel measuring instruments in the bio-reactor and smart multi-item water quality sensors (location in bio-reactor influent/effluent) were installed in The Seonam water recycling center #2 treatment plant series 3, it was collected water quality data centering around COD, T-N. Using the collected data, the artificial intelligence-based effluent quality prediction model was developed, and relative errors were compared with effluent TMS measurement data. Through relative error comparison, the applicability of the artificial intelligence-based effluent water quality prediction model in wastewater treatment process was reviewed.
이 연구에서는 Inception V3, SqueezeNet(local), VGG-16, Painters 및 DeepLoc의 다섯 가지 인공지능(AI) 모 델을 사용하여 차나무 잎의 병해를 분류하였다. 여덟 가지 이미지 카테고리를 사용하였는데, healthy, algal leaf spot, anthracnose, bird’s eye spot, brown blight, gray blight, red leaf spot, and white spot였다. 이 연구에서 사용한 소프트웨 어는 데이터 시각적 프로그래밍을 위한 파이썬 라이브러리로 작동하는 Orange3였다. 이는 데이터를 시각적으로 조작하여 분석하기 위한 워크플로를 생성하는 인터페이스를 통해 작동되었다. 각 AI 모델의 정확도로 최적의 AI 모 델을 선택하였다. 모든 모델은 Adam 최적화, ReLU 활성화 함수, 은닉 레이어에 100개의 뉴런, 신경망의 최대 반복 횟수가 200회, 그리고 0.0001 정규화를 사용하여 훈련되었다. Orange3 기능을 확장하기 위해 새로운 이미지 분석 Add-on을 설치하였다. 훈련 모델에서는 이미지 가져오기(import image), 이미지 임베딩(image embedding), 신경망 (neural network), 테스트 및 점수(test and score), 혼동 행렬(confusion matrix) 위젯이 사용되었으며, 예측에는 이미 지 가져오기(import image), 이미지 임베딩(image embedding), 예측(prediction) 및 이미지 뷰어(image viewer) 위젯 이 사용되었다. 다섯 AI 모델[Inception V3, SqueezeNet(로컬), VGG-16, Painters 및 DeepLoc]의 신경망 정밀도는 각 각 0.807, 0.901, 0.780, 0.800 및 0.771이었다. 결론적으로 SqueezeNet(local) 모델이 차나무 잎 이미지를 사용하여 차 병해 탐색을 위한 최적 AI 모델로 선택되었으며, 정확도와 혼동 행렬을 통해 뛰어난 성능을 보였다.
재료의고온소성변형과 수명예측 및 수명향상을 위하여 재료의 변형기구를 규명하는 것이 매우 중요하다. 이를 위하여 전위환모델이 자주 사용되며, 현재 실험적인 결과를 토대로 한 두개의 중요한 전위환모델로서, Orlova등고 Mills등이 제시한 모델들이 있다. 이들은 모두AI-5.5at.%MG을 사용하였으나 상호 상반된 전위환모델을 설명하고 있다. 그러므로 본 연구에서는 상반된 전위환 모델을 확인하기 위하여 AI-5.5at.%MG을 사용하여 573K의 약 30MPa에서 ε=0.03까지 크?시험을 하고, 이러한 크?시험후 이어서 각각 약 15,10 및 oMPa의 응력감소 시험도 수행하였으며, 동시에 응력감소 시험 전과 후의 전위구조를 관찰하여 전위환모델을 고찰하였다.