검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 4

        1.
        2022.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The pitch-based activated carbon fibers (ACFs) were prepared from ethylene tar-derived pitches containing nickelocene (CNi) or nickel nitrate (NiN). The effects of different anions and contents of metal salts on the microstructure and surface chemical properties of fibers were investigated. The results revealed that Ni2+ from CNi mainly remained its pristine molecule in the organometal salt-derived pitch (OP-xCNi), while Ni2+ from NiN occurred complexation reaction with polycyclic aromatic hydrocarbons (PAHs) in the inorganic metal salt-derived pitch (IP-xNiN) due to the weaker binding ability between anions and Ni2+ of CNi than CNi. The XRD and SEM results confirmed that IP-3NiN-ACF contained Ni, NiO, Ni2O3 nanoparticles with different size distributions, while OP-3CNi-ACF only contained more uniformly distributed Ni nanoparticles with small size. Furthermore, OP-3.0CNi-ACF presented higher specific surface area of 1862 m2/ g and a pore volume of 1.69 cm3/ g than those of IP-3.0NiN-ACF due to the formation of pore structure during the in-situ catalytic activation of different metal nanoparticles. Therefore, this work further pointed out that the desired pore structure and surface chemistry of pitch-based ACFs could be obtained through regulating and controlling the interaction of anion species, metal cations and PAHs during the synthesis of pitch precursors.
        4,300원
        2.
        2017.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The aim of this work was to evaluate the dielectric properties of impregnated and activated palm kernel shells (PKSs) samples using two activating agents, potassium carbonate (K2CO3) and sodium hydroxide (NaOH), at three impregnation ratios. The materials were characterized by moisture content, carbon content, ash content, thermal profile and functional groups. The dielectric properties were examined using an open-ended coaxial probe method at various microwave frequencies (1–6 GHz) and temperatures (25, 35, and 45°C). The results show that the dielectric properties varied with frequency, temperature, moisture content, carbon content and mass ratio of the ionic solids. PKSK1.75 (PKS impregnated with K2CO3 at a mass ratio of 1.75) and PKSN1.5 (PKS impregnated with NaOH at a mass ratio of 1.5) exhibited a high loss tangent (tan δ) indicating the effectiveness of these materials to be heated by microwaves. K2CO3 and NaOH can act as a microwave absorber to enhance the efficiency of microwave heating for low loss PKSs. Materials with a high moisture content exhibit a high loss tangent but low penetration depth. The interplay of multiple operating frequencies is suggested to promote better microwave heating by considering the changes in the materials characteristics.
        4,200원
        3.
        2017.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Polyacrylonitrile/pitch nanofibers were prepared by electrospinning as a precursor for a gas sensor material. Pitch nanofibers were properly fabricated by incorporating polyacrylonitrile as an electrospinning supplement component. Polyacrylonitrile/pitch nanofibers were activated with steam at various temperatures followed by subsequent carbonization to make carbon nanofibers with a highly conductive graphitic structure. Steam activation was effective in facilitating gas adsorption onto the carbon nanofibers due to the increased surface area. The carbon nanofibers activated at 800°C had a larger surface area and a lower micro pore fraction resulting in a higher variation in electrical resistance for improved CO gas sensing properties.
        4,000원