Mesenchymal stem cells (MSCs) are an attractive source for cell therapy, as they have the potential for differentiation into multi-lineage cells. Adipose tissue is a safe source due to its easy extraction and abundant resource, with minimal risk to the organ donor. In this study, we attempted to correlate the harvest yield and resulting multipotency of feline adipose tissue-derived mesenchymal stem cells (fAD-MSCs) in accordance with processing time. fAD-MSCs were individually isolated from the abdominal adipose tissues of 6 felines. They were divided into two groups, based on their processing times – Group 1: 0~1 day after adipose tissue harvesting; Group 2: more than 3 days after adipose tissue harvesting. In both groups, the proliferation capacity was analyzed using the cumulative population doubling level (CPDL) calculation assay. The expression levels of MSC-specific markers and differentiation potentials into mesodermal cell lineages were also evaluated. We observed that fAD-MSC isolation yields and CPDL were excellent in Group 1 compared with Group 2. We also found that the differentiation potential-specific genes (ACAN and OPN) were strongly expressed in Group 1 compared with Group 2. These results suggest that for the clinical treatments of feline diseases, fAD-MSCs should be isolated within 1 day after adipose tissue harvesting.
Adipose tissue-derived mesenchymal stem cells (ASCs) are very interesting in several laboratory animals and humans because they are easy to harvest and expand to generate millions of cells from a small quantity of fat. ASCs are known as useful materials for clinical applications in human cell therapy and as a donor cell in somatic cell nuclear transfer (SCNT). Here, we investigated if 1) minipig ASCs can be isolated, self-renewed and differentiated into multiple tissue lineages, 2) ASCs can be a suitable donor cell type for generation of cloned pig. In order to isolate ASC, adipose tissues were collected from inguinal region of a 6-year-old female minipig. The ASCs were attached to the culture dish with a fibroblast-like morphology. They expressed cell-surface marker characteristics of stem cell, underwent osteogenic, adipogenic, myogenic, neurogenic and chondrogenic differentiation when exposed to specific differentiation-inducing conditions. To investigate its potential as donor cell for cloning, we respectively carried out SCNT using ASC, adult skin fibroblast (ASF) and fetal fibroblast (FF) derived from same minipig. The ratio of blastocysts to 2-cell embryos and total cell number of blastocysts were monitored as experimental parameters. In results, cleavage and developmental competence to blastocysts rate showed no significant difference among the three groups. On the other hand, total cell numbers of blastocysts derived from ASC and FF were significantly higher than in ASF (89±7.9 and 105±5.5 vs. 57.5±5.2, respectively). Our results demonstrated that ASC have potential compared to ASF and FF in terms of the in vitro development and blastocyst formation ability. In further study, we will investigate the in vivo developmental ability of ASC as donor cell for pig cloning. * This study was supported by IPET (#311011-05-1-SB010), RNL Bio (#550-20120006), Institute for Veterinary Science, the BK21 program, TS Corporation and Optifarm Solution.
Biological resources including proteins, cells, and tissues were confronted with both safe and stable preservation for practical use in biotechnological industry. Particularly, cell therapy for regenerative engineering is needed to restricted regulation and accurate preservation. Therefore, this study was investigated improved conditions of mesenchymal stem cells from human umbilical cord (hUCs) or aspirated adipose tissues (hATs) for clinical cell banks. Both cells were isolated according to standard operation procedure of Hurim BioCell Inc. and analyzed the inherent characteristics in passage 4. To compare the ability of experimental groups after cryopreservation, proliferation ability using calculated values and cytomorphological patterns of each experimental step were analyzed. Also proteins such as ice-binding protein or caspase inhibitor were applied to add the preservation medium of hUCs or hATs. Result of preservation solution with 20% serum was considered a positive group. Recovery rate and expansion results showed specific dosage and cell type-dependent differences in the experimental group. Chromosomal stability and multipotency of hUCs or hATs were expressed stable pattern after cryopreservation using advanced medium. As a result, these additives could be substituted for xenogenic sources in banking of hUCs or hATs.
본 실험은 bioceramic을 첨가하여 만든 다공성 poly D,L-lactic-co-glycolic acid(PLGA)-scaffold가 인간 지방조직에서 유래된 중간엽 줄기세포(human adipose tissue derived mesenchymal stem cells, ATMSCs)의 골 형성과정에 효과적인지를 알아보고자 수행하였다. ATMSCs를 well plate에 접종하여 골형성 유도(osteogenic induction, OI) 배양액으로
Mesenchymal stem cells (MSCs) has been reported as multipotent progenitor cells that can be expanded rapidly in vitro and differentiated into multiple mesodermal cell type. Human MSCs have been reported to be associated with neural differentiation especially in the cholinergic phenotype in several neural system. In this study, We investigated the ability of MSCs derived human aipose tissue to differentiation into neural cells expressing Islet-1 and further differentiates into cholinergic neurons in cholinergic differentiation media. Immunocytochemistry was performed to detect the expression of Islet-1 and demonstrate characteristic of neurons and cholinergic neurons. Islet-1 was massively detected in the induction stage. Following cholinergic differentiation from Islet-1-expressing MSCs, Cholinergic neuron marker ChAT was higly expressed. Also we examined the neuroprotective effects and neural differentiation of transplanted human adipose tissue-derived mesenchymal stem cells (AT-MSCs) in ischemic stroke. For transplantation, after 3days after MCAO. animal were divided into 2 group: Group A : injected phosphate buffered saline (PBS;5 ㎕ n=10), Group B: transplanted AT-MSCs (5×105 cells, n=10). Each animal received an injection into the right penumbra region (from bregma : AP;-1.3 ㎜, ML;-4.0 ㎜, DV;-5.9 ㎜). In all animals, behavior test were performed at 1, 3, 6, 9, 12, 15 days after MCAO, that was conducted by investigators who were blined to the experimental groups. mNSS test demonstrated that motor, sensory, and balance behavior were impaired after MCAO ischemic insult. Ischemic rats that received AT-MSCs exhibited significantly improved functional performance compared with PBS injected animals and histological analysis revealed that transplanted AT-MSCs expressed marker for neuron. These results suggest that AT-MSCs can be differentiated into neuron especially in cholinergic neuron and may be a potential source of treatment for neurodegenerative disease such as stroke.
손상된 뇌신경조직내에서 신경줄기세포로부터 새로운 신경세포로의 분화가 상당히 제한되어 있어 이것이 손상된 뇌신경조직의 복구가 잘 이루어지지 않는 원인이라 여겨지고 있다. 본 연구에서는 세포배양을 통해 지방조직 중간엽 줄기세포를 도파민성 신경세포와 콜린성 신경세포로 분화를 유도하였다. 중간엽 줄기세포를 신경세포로 분화시키기 위해 N2배양액에 bFGF, EGF, dimethyl sulphoxide (DMSO)와 butylated hydroxyanisole (