최근에는 대규모 건축 및 토목 구조물로 인해 건설 부재의 고강도 및 경량화에 대한 요구가 높아지고 있다. 기존의 경량 시멘트 복합체의 경우 단위 체적 중량이 낮아질 수 있으나 강도 저하 문제가 발생한다. 일반적으로 경량화를 위해서는 시멘트 복합체를 배합할 때 일반 경량골재와 고무경량골재, 플라스틱 펠릿 등 다양한 인공 경량골재를 이용한 시멘트 복합체를 혼 합하여 경량화를 확보할 수 있다. 이 중 시멘트 복합체의 인공 경량골재로 플라스틱을 사용하면 상대적으로 골재 자체의 강도를 확보할 수 있지만 재료의 표면 특성으로 인해 시멘트 페이스트에 부착하는데 불리하고 골재로서의 사용이 불리하다. 이에 본 연구에서는 골재로 가장 적합한 플라스틱의 유형을 선택하기 위해 다양한 유형의 플라스틱 시멘트 화합물을 변수로 하여 실험을 진행하였고 실험 결과 플라스틱의 비중이나 표면 재질에 의해서 시멘트 복합체의 물리적 성질이 변화하는 것을 확인할 수 있었다.
In this study, it is conducted analysis of water absorption of artificial lightweight aggregate using coal ash. For absorption of water, the artificial lightweight aggregate was submerged for 24hours or in conditions of high temperature(100℃) and normal pressure. And it was measured water absorption ration and density( in conditions of oven-dry and saturated surface dry).
In this study, high strength concrete with satuated artificial lightweight aggregate(SLWA) produced by domestic for reducing autogenous shrinkage, which provides additional water to the hydratin cement particles, is applied to be the internal curing. This paper presents the test result of basic property of SLWA and autogenous shrinkage with volumes of SLWA.
최근 구조물들이 대형화됨으로써 보통 콘크리트를 사용할 경우 강도 및 내구성에 비하여 중량이 크다는 결점으로 인해 콘크리트 구조물의 설계 및 시공의 안정에 제약을 주게 된다. 이러한 결점을 개선하기 위해서는 자중이 작고 강도가 큰 경량콘크리트가 요구되나, 국내에서는 실용화를 위한 연구가 아직 미비한 실정에 있다.
일반적으로 고온에서 소성시켜 제조된 인공골재는 골재가 팽창되어 내부에 무수한 기포를 가지게 된다. 따라서 골재의 크기에 따라 이들의 기포가 경량콘크리트 비중과 강도에 미치는 영향 연구가 필요하다.
본 연구에서는 국내에서 개발된 화력발전소 폐기물과 점토를 고온에서 소성, 팽창시켜 만든 인공경량골재의 입도별 배합설계를 실시하고 실험을 통하여 경량콘크리트의 비중 및 강도변화를 비교 고찰했다. 또한 경량콘크리트의 고강도 발현을 위한 인공경량골재의 최적 입도비를 제안하였다.
The main objective of this research was to evaluate the effects of process variables which were forming ability, flow displacement, effective stress, effective strain, fluid vector and products defects on manufactured artificial lightweight aggregate made of both incinerated sewage sludge ash and clay by means of the numerical analysis of a rigid-plastic finite element method. CATIA (3D CAD program) was used for an extrusion metal mold design that was widely used in designing aircraft, automobile and metallic molds. A metal forming analysis program (ATES Co.) had a function of a rigid-plastic finite element method was used to analyze the program. The result of extrusion forming analysis indicated clearly that a shape retention of the manufactured artificial lightweight aggregate could be maintained by increasing the extrusion ratio (increasing compressive strength inside of extrusion die) and decreasing the die angle. The stress concentration of metal mold was increased by increasing an extrusion ratio, and it was higher in a junction of punch and materials, friction parts between a bottom of the punch and inside of a container, a place of die angle and a place of die of metal mold. Therefore, a heat treatment as well as a rounding treatment for stress distribution in the higher stress concentration regions were necessary to extend a lifetime of the metallic mold. A deformity of the products could have made from several factors which were a surface crack, a lack of the shape retention and a crack of inside of the products. Specially, the surface crack in the products was the most notably affected by the extrusion ratio.