Background: Using wearable passive back-support exoskeletons in workplace has attracted attention as devices that support the posture of workers, enhance their physical capabilities, and reduce physical risk factors. Objects: This study aimed to investigate the effect of a wearable passive back-support exoskeleton on the activity of the erector spinae muscles during lifting tasks at various heights. Methods: Twenty healthy adult males were selected as subjects. Electromyography (EMG) was used to assess the activity of the erector spinae muscles while performing lifting tasks at three distinct heights (30, 40, and 50 cm), with and without the application of the Wearable Passive Back Support Exoskeleton. EMG data were gathered before and after the application of the orthosis. Results: The use of the Wearable Passive Back Support Exoskeleton resulted in a significant decrease in muscle activity when lifting a 10 kg object from heights of 30 and 40 cm (p < 0.05). Additionally, there was a significant reduction in muscle activity when lifting from a height of 50 cm compared with that at lower heights (p < 0.05). Conclusion: The use of a wearable passive back-support exoskeleton led to a decrease in the activity of the erector spinae muscles during lifting tasks, irrespective of the object's height. Our results suggest that the orthosis we tested may help decrease risk of lower back injuries during lifting.
Background: Several factors contribute to shoulder pain, including abnormal neck posture, repeated use of the upper limbs, work involving raising the upper limbs above the head, and the effects of vibration. However, previous study has reported that constant vibration exposure could impact improvement of the stability on joints related with muscle recruitment and activation. For this difference reason, we need to verify for the complex study of relationship with repetitive upper limb movements, poor head posture, and constant vibration exposure.
Objects: Our study was made to investigate the influence of vibration exposure on the shoulder muscle activity during forward-head and over-head tasks with isometric shoulder flexion.
Methods: In a total of 22 healthy subjects, surface electromyography (EMG) data were collected from shoulder muscles (upper/lower trapezius, serratus anterior, and lumbar erector spinae) on tasks (neutral-head task [NHT], forward-head task [FHT], and over-head task [OHT]) with and without vibration exposure.
Results: In all tasks, the EMG data of the upper trapezius and serratus anterior significantly increased with vibration exposure (p < 0.05). Furthermore, the EMG data of the lumbar erector spinae significantly increased with vibration exposure in the NHT and FHT (p < 0.05).
Conclusion: We suggest that continuous vibration exposure during the use of hand-held tools in the tasks could be associated with harmful effects in the workplace. Lastly, we clinically need to examine the guidelines regarding the optimal posture and vibration exposure.
Background: Previous researchers have investigated the mechanical and neurophysiological effects of manual mobilization, however little research has been done on muscle tone and muscle stiffness.
Objective: To compare the effects of posterior-anterior (PA) mobilization with weight bearing on sling and conventional PA mobilization on the bed. Design: Randomized controlled trial (single blind)
Methods: The subjects were 16 male university students and randomized to sling mobilization group (SMG, n=8) or conventional mobilization group (CMG, n=8). SMG received PA mobilization using a sling and CMG received traditional mobilization on the bed during lumbar mobilization.
Results: Both left and right muscle tones of SMG increased, but left muscle tone of SMG were increased and right muscle tone was decreased after intervention. In addition, both left and right muscle stiffness of SMG were also increased, however left muscle stiffness of SMG was increased and right muscle stiffness was decreased. The muscle tone and muscle stiffness of SMG were higher than those of DMG, especially the right side was statistically significantly higher. Extension of SMG, extension and flexion of CMG were increased statistically significantly except for Flexion of SMG (p<.05). There were no significant differences between the groups in Extension and Flexion. Conclusions: This study suggests that lumbar spine PA mobilization using sling is beneficial in improving muscle tone, muscle stiffness, and trunk movement.
The purpose of this paper is to suggest the strategical lifting postures able to alleviate imbalanced EMG amplitude leading to an increase in low back muscle fatigue while lifting asymmetric load dynamically. Eleven male subjects are required to lift symm
Many muscles of the trunk and hip are capable of contributing to the stabilization and protection of the lumbar spine. To have optimal effectiveness, a training program should include dynamic back/stomach/hip exercises. This study was designed to assess the L5 level paraspinal, external abdominal oblique, and gluteus maximus muscle activities during various low back stabilization exercises. Participants were 26 healthy adults (13 males, 13 Females), aged 21 to 28 years. The surface electromyography (EMG) was recorded from the L5 level paraspinal, external abdominal oblique, and gluteus maximus muscles. The recorded signal was averaged and normalized to the maximal electromyographic amplitude obtained during the maximal voluntary contraction. The measurements were taken during 3 low back stabilization exercises. One-way analysis of variance with repeated measures was used to examine the difference, and a post hoc test was performed with least significant difference. A level of significance was set at p<.05. The significance of difference between men and women, and between the electromyographic recording sites was evaluated by an independent t-test. The EMG activity for the externus oblique and gluteus maximus muscles had significant differences among 3 exercises (p<.05). In males, the EMG activity for the external abdominal oblique muscle had significantly increased differences during exercises 1 and exercise 2 (p<.05). The gluteus maximus muscle had significantly increased differences during exercise 2 and exercise 3 (p<.05). In females, the multifidus muscle had significantly increased difference during exercise 3 (p<.05), the external abdominal oblique muscle had significantly increased difference during exercise 1 (p<.05). and the gluteus maximus muscle had significantly decreased difference during exercise 3 (p<.05). The results were that the external abdominal oblique muscle was apparently activated during the curl-up exercise in females and males, and the multifidus muscle was apparently activated during the bridging exercise in females and during the sling exercise in males and females.1)In comparison of the %MVC between males and females, exercise 2 and exercise 3 apparently activated of the multifidus and gluteus maximus muscles in both males and females (p<.05). The EMG activity of the gluteus maximus muscle of the males significantly increased during exercise 2 and exercise 3 (p<.05). The EMG activity the multifidus muscle of the females was significantly increased during exercise 2 and exercise 3 (p<.05). More research is needed to understand the nature of motor control problems in the deep muscles in patients with low back pain.
The purpose of this study was to investigate the effects of backrests of varying degrees (, , ) on three abdominal muscles (upper rectus abdominis, external oblique, internal oblique) and back extensor activation during lower extremity exercise. The three different conditions during bilateral knee extention exercise were: (1) leaning on a chair with a backrest, (2) leaning on a chair with a backrest, (3) leaning on a chair with a backrest. Fifteen healthy muscle subjects (mean age=24.2 years [SD=2.96], mean height=175.6 cm [SD=7.46], mean weight=69.1 kg [SD=7.36]) with no history of neuromusculoskeletal disease voluntarily participated in this study. Electromyography was used to collect muscle activation, and the muscle activation was expressed as a percentage of maximal voluntary isometric contraction (%MVIC). Repeated one-way analysis of variance (ANOVA) was used to determine the statistical significance. The results were as follows: (1) upper rectus abdominis, external oblique, internal oblique activation measured significantly lower. (2) measured significantly lower when lower degree.
Back extension exercises have been used for rehabilitation of the injured low back, prevention of injury, and fitness training programs. However, excessive loading on low back can exacerbate existing structural weakness. The purpose of this study was to compare muscle activity of low back muscles during back extension exercises. Twenty healthy male subject s were evaluated. Electromyographic (EMG) activities of low back muscles at L1 and L5 level were recorded during seven different back extension exercises and two reference tasks by surface EMG and saved for data analysis. Reference tasks of lifting 20% and 40% of their body weight were included for comparison. The result were as follows: 1) Single-arm extension and single-leg extension exercises on quadruped position appeared to constitute a low-risk exercise for initial extensor strengthening. 2) When arm extension was combined with contralateral leg extension on quadruped position, EMG activities of low back muscles were increased. 3) EMG activity of low back muscles was highest during the trunk extension exercises on prone position. 4) EMG activities of low back muscles during arm and leg extension exercises on quadruped position were less than those of reference task of lifting 40% of their body weight. These result s have important implications for progressive back extensor muscle strengthening exercises in patients with back pain.
The purpose of this study was to assess the fatigue in lumbar and abdominal muscles in patients with chronic low back pain compared with normal subjects using spectral analysis with mean power frequency and median power frequency. The experimental group consisted of twenty subjects who had experienced chronic low back pain for over one year after the onset day. A control group consisted of twenty normal subjects with no history of low back pain. All subjects stood in an apparatus to perform sustained contraction in the lumbar and abdominal muscles for 30 seconds with 60% maximal voluntary isometric contraction (MVIC). The resulting electromyographic (EMG) recorded time serial data were transformed into frequency serial data by Fast Fourier Transformation (FFT). The results were as follows: 1) lumbar muscles measured, the frequency change ratio of both median power frequency and mean power frequency was significantly greater for experimental group compared with control group group (p<0.05). In measured two abdominal muscles (inferior rectus abdominis, obliquus externus abdominis) except superior rectus abdominis, the frequency change ratio of both median power frequency and mean power frequency was significantly greater for experimental group compared with control group (p<0.05). 2) In all three (longissimus thoracis, iliocostalis lumborum, multifidus) lumbar muscles measured, the initial frequency value of both median power frequency and mean power frequency was significantly lower for the experimental group compared with the control group (p<0.05). In the two (inferior rectus abdominis, obliquus externus abdominis) abdominal muscles measured (superior rectus abdominis not included), the initial frequency value of both median power frequency and mean power frequency was significantly lower for the experimental group compared with the control group (p<0.05). These results suggest that in patients with chronic low back pain there is a trend for more fatigue to occur in both lumbar and abdominal muscles than in the normal control group. This would seem to suggest that in treatment programs for patients with chronic low back pain, improvement of endurance in all trunk muscles should be considered.
Trunk holding test (Sorensen test) appear to have more value than strength test in prediction the occurrence of low back pain. Electromyographic activity of trunk extensor muscles during these test may provide clues to the etiology of neuromuscular-based low back pain. This study investigated the difference in back muscle endurance between healthy adult men and women using surface electromyographic (EMG) power spectral analysis. Thirty hea1thy subjects (15 men and 15 women) performed an unsupported trunk holding test for 60 seconds. Recording surface electrodes were placed over the erector spinae medially and laterally at vertebral levels of and . Slope of total frequency was evaluated using the MP100WSW Fast Fourier Transform spectrum analysis program. The slopes of all indices of back muscle fatigue, except right , were significantly steeper in men than in women (p<0.05). Our results indicated that the trunk holding test using EMG power spectral analysis of erector spinae muscles is useful for the evaluation of fatigue rate of these muscles. Our results also showed a higher muscle endurance in healthy adult women than in men.