In this study, nitrogen and fluorine co-doped carbon nanocages (NF-CNCs) were synthesized as anode materials for potassium- ion batteries (KIBs), and their structural evolution with heat treatment and electrochemical behavior with different functional groups was investigated. NF-CNCs were prepared by physically mixing coal tar pitch (CTP) with a SiO2 template, followed by heat treatment and subsequent fluorination with NF3 gas. A systematic investigation of the structural properties revealed that graphitization increased with increasing heat treatment temperature as the carbon structure transitioned from amorphous at 500 and 1000 °C to graphite-like at 1500 °C. Furthermore, nitrogen and fluorine functional group analysis revealed significant changes, particularly in terms of covalent and semi-ionic C‒F bonds. Among the samples, NF-CNC 1000 displayed excellent electrochemical performance, with a specific capacity of 395.1 mAh g− 1 and a capacity retention rate of 94% during 1000 cycles at 50 mA g− 1. The exceptional performance of NF-CNC 1000 is attributed to its high porosity, amorphous carbon structure, and semi-ionic C‒F bonds, which facilitate the efficient adsorption and intercalation of potassium ions. These findings provide valuable insights into the design of advanced anode materials for next-generation KIBs.
Sodium-ion batteries (SIBs) offer a viable alternative to partially or fully replace lithium ion batteries (LIBs) due to their lower cost and increased safety. This paper outlines the compositional optimizations, crystallographic evaluations, and electrochemical behavior of a novel mixed NASICON polyanionic compound, NaFe2PO4(SO4)2 (NFPS). X-ray photoelectron spectrometry (XPS) results showed that cobalt doping produces a higher concentration of oxygen defects compared to undoped samples. Scanning electron microscopy (SEM) analysis results revealed that the modified sample has more uniform pores and pore distribution. Brunauer-Emmett-Teller (BET) measurements showed that doping of Co2+ reduces the specific surface area of NFPS-Co0.08 compared to NFPS. This shortens the sodium ion diffusion pathway and promotes ion dynamics. The addition of Co2+ to the sample significantly improved its performance during galvanostatic charge-discharge tests. The electrochemical activity also is significantly enhanced by Co2+ doping. Na0.84Co0.08Fe2PO4(SO4)2 exhibits superior rate and cycling performance compared to pristine NFPS. After 80 cycles at 25 mA g-1, NFPS-Co0.08 retained discharge specific capacity of 60.8 mA h g-1, which is 1.24 times greater than that of NFPS.
Inspired by the recycling approach of electronic waste, within this research paper, we extracted exhausted materials from spent primary zinc batteries and then annealed them in a modified condition, forming a ZnMn2O4/ C composite with a uniform nanoparticles’ porous morphology. The produced material has been examined as a supercapacitor active one, which showed promising electrochemical properties for supercapacitor application. At a current density of 3 A g− 1, it exerted a comparatively significant capacitance of 1696.88 F g− 1 along with a capacity of 807 C g− 1. Furthermore, the fabrication of a flexible all-solid-state symmetric supercapacitor prototype has been accomplished. It exhibited promising initial results that carried a specific energy of 76.75 Wh kg− 1 at a specific power of 333.86 W kg− 1. After 3000 cycles, it maintained an acceptable capacity. Thus, this eco-friendly approach can successfully convert the spent battery material to new value-added materials for supercapacitors in the clean energy area.
To optimize the electrochemical properties of Ni-rich cathode materials, CPAN@SC-NCM811 is prepared via surface modification of single-crystalline LiNi0.8Co0.1Mn0.1O2 cathode material by adding 1, 2 and 3 wt.% of polyacrylonitrile, respectively. Significantly, the results obtained from X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM) verify the successful synthesis of CPAN@SC-NCM811 cathode, which exhibits better electrochemical properties compared to SC-NMC811. After thorough milling and calcination of 2 wt.% polyacrylonitrile with SC-NCM811, the initial discharge specific capacity of prepared S2 sample is 197.7 mAh g− 1 and the capacity retention reached 89.2% after 100 cycles at a rate of 1.0 C. Furthermore, the S2 sample exhibits superior rate performance compared to the other three samples, in which these superior electrochemical properties are largely attributed to the optimal ratio of conductive cyclized polyacrylonitrile coatings. Overall, this work offers guidelines for modifying the surface of SC-NCM811 cathode materials for lithium-ion batteries with exceptional cycling and rate performance.
Polyethylene (PE) is one of the most widely used plastics, and vast amounts of waste PE are either buried or incinerated, leading to environmental concerns. Significant research efforts have focused on converting waste PE into carbon materials, particularly as carbon anodes for lithium-ion batteries (LIBs). However, most previously developed PE-based carbon anodes have underperformed compared to graphite-based commercial anode materials (CAM). In this study, LIB anode materials were prepared based on both commercial high-density polyethylene (CPE) and waste high-density polyethylene (WPE). Through thermal oxidative stabilization and high-temperature graphitization, both CPE and WPE were successfully transformed into highly crystalline carbon materials comparable to CAM. However, despite the high crystallinity, both CPE and WPE derived carbon contained significant number of fine particles and exhibited a broad particle size distribution. When used as an anode for LIBs, fine particles led to unwanted side reactions, resulting in an initial coulombic efficiency (ICE) of around 85%, which is lower than the ICE value of 92.5% observed in CAM. To tackle the low ICE problem, recarbonization after coal tar (CT) coating was adopted as a mean to induce secondary particle formation. After CT coating, the average particle size increased, and the size distribution became narrower. Although CT coating reduced the crystallinity slightly, the overall level remained comparable to that of CAM. As a result, the CT-coated graphitized CPE (GCPE@10CT) and CT-coated graphitized WPE (GWPE@10CT) exhibited performance comparable to CAM as LIB anodes, achieving an ICE of over 93% and a capacity of approximately 349 mAh g− 1.
This study introduces a cost-effective electrochemical exfoliation technique for producing highly crystalline graphene from graphite. By optimizing key exfoliation parameters, including voltage, electrolyte concentration, and temperature, the efficiency of the exfoliation process and the quality of the resulting graphene were significantly improved. To further enhance crystallinity, minimize defect sites, and achieve superior material properties, the as-prepared electrochemically exfoliated graphene (AeEG) underwent post-heat treatment at temperatures ranging from 1500 to 2950 °C. When employed as a conductive additive, eEGs heat-treated at 1800 °C or higher significantly improved both cycle stability and rate performance in LIB coin cells, while maintaining a discharge capacity approximately 10–12 mAh/g higher than that of the control, which utilized Super P. The enhanced performance is attributed to the formation of an efficient conductive network and superior electron transport properties, driven by the high crystallinity and large aspect ratios of the heat-treated eEGs. These findings highlight the potential of eEG as a highly effective conductive additive for advanced battery industries, offering significant improvements in energy storage performance, specific capacity, and rate characteristics.
Biochar is considered as key anode material for alkali metal (lithium, sodium, and potassium) ion batteries (AIBs) owing to its rich microstructural features, high specific surface area, active sites, excellent conductivity, and mechanical strength. The multidimensional structures and diverse functional groups of biochar make it enable easy modification to improve ion transport, interface deposition behavior, and electrolyte stability. In addition, biochar-based derivatives, such as silicon/biochar composite anode materials, combine the advantages of high-energy density and low lithiation potential of silicon materials, as well as the superior conductive ability and outstanding mechanical qualities of biochar. In this review, the microstructure, properties, and synthesis methods of biochar materials are systematically clarified, and then, their applications in AIBs are presented followed by summarizing the energy storage mechanism and advanced physicochemical characterizations. Common structural configurations and preparative technique for biochar/silicon-based composites are summarized, such as core–shell, yolk–shell, and embedded coating structures with improved electrochemical and mechanical stability. Finally, toward practical application of biochar and biochar-based derivatives in future AIBs, the issues and challenges are outlined.
This study proposes a weighted ensemble deep learning framework for accurately predicting the State of Health (SOH) of lithium-ion batteries. Three distinct model architectures—CNN-LSTM, Transformer-LSTM, and CEEMDAN-BiGRU—are combined using a normalized inverse RMSE-based weighting scheme to enhance predictive performance. Unlike conventional approaches using fixed hyperparameter settings, this study employs Bayesian Optimization via Optuna to automatically tune key hyperparameters such as time steps (range: 10-35) and hidden units (range: 32-128). To ensure robustness and reproducibility, ten independent runs were conducted with different random seeds. Experimental evaluations were performed using the NASA Ames B0047 cell discharge dataset. The ensemble model achieved an average RMSE of 0.01381 with a standard deviation of ±0.00190, outperforming the best single model (CEEMDAN-BiGRU, average RMSE: 0.01487) in both accuracy and stability. Additionally, the ensemble's average inference time of 3.83 seconds demonstrates its practical feasibility for real-time Battery Management System (BMS) integration. The proposed framework effectively leverages complementary model characteristics and automated optimization strategies to provide accurate and stable SOH predictions for lithium-ion batteries.
Aqueous zinc–iodine batteries (AZIBs) are gaining attention for their ability to store and convert electrical energy. Nevertheless, their performance is hindered by the continual migration of polyiodides towards the zinc anodes, leading to undesirable side reactions, diminished coulombic efficiency, and compromised cycling stability. Traditional carbon materials have proven inadequate in resolving these challenges, mainly due to their limited iodine capacity and weak binding forces. Herein, we explore the use of porous carbon nanosheets (PCNSs) synthesized via the “Pharaoh’s Serpent” reaction as cathode electrodes in AZIBs without pre-load iodine. The PCNSs, characterized by their nanosheet structure and expansive specific surface area, not only facilitate a shorter diffusion path for rapid electrolyte infiltration but also provide numerous sites for ion adsorption and capacitive storage, markedly improving the efficacy of electrochemical reactions and ion migration rates. Utilizing the synthesized PCNSs as the cathode electrode in AZIBs, a specific capacity of 296 mAh g− 1 was achieved at 0.3 A g− 1. Even when the current density increased to 30 A g− 1, a specific capacity of 144 mAh g− 1 was still attained, with a capacity retention ratio of up to 48.6%, which is competitive with that of supercapacitors. In addition, the AZIBs demonstrated impressive cycling stability, retaining 103% of their capacity after 10,000 cycles, and a notable energy density of 266.4 Wh kg− 1 based on the cathode material. These findings significantly broaden the application of carbon materials in AZIBs research, emphasizing their potential in advancing AZIB technology.
Considering the intrinsic activity of non-precious metal oxygen reduction reaction (ORR) catalysts is typically lower than that of precious metal catalysts, it is crucial to focus on the rational design of their micro-morphology and active site. This paper employed a simple molten salt-mediated template method to fabricate a Fe3C composite N-doped C catalyst with a layered porous framework ( Fe3C@NC). Tannic acid was utilized to form a strong coordination with iron to limit the grain size of Fe3C nanocrystals generated by high-temperature pyrolysis. Moreover, urea achieved nitrogen doping in tannic acidderived porous carbon, while the graphite phase nitrogen-doped carbon (g-C3N4) formed by its pyrolysis, together with the molten salt-mediated environment, jointly controlled the two-dimensional sheet-like structure of the material. The optimized Fe3C@ NC-800 demonstrated efficient ORR performance, with an ORR half-wave potential of 0.883 V. Its application as a cathode catalyst in a liquid zinc-air battery (ZABs) exhibits a maximum power density of 211.5 mW cm− 2, surpassing that of a Pt/C-based ZAB and indicating the potential practical utility of this material.
Oxyfluorination treatment was used to enhance the electrochemical properties of SiOx/C-based lithium-ion battery anode materials by improving the dispersibility of multi-walled carbon nanotubes, which are conductive materials. The dispersibility, chemical, and morphological characteristics of the oxyfluorinated carbon nanotubes were confirmed through various analyses. In addition, the effect of oxyfluorination was analyzed by a lithium-ion battery performance test, and the discharge capacity and cycling stability were significantly improved. The introduction of oxygen functional groups onto the surface of the carbon nanotubes improved their dispersibility. The fluorine functional groups also acted as catalysts for the introduction of these oxygen functional groups onto the surface and improved the cycling stability by forming a LiF-based solid electrolyte interphase layer. The high discharge capacity and improved cycling stability of these lithium-ion batteries were attributed to the enhanced dispersibility of carbon nanotubes induced by oxyfluorination and the resulting enhancement of the 3D network in the anode material promoting the movement of lithium ions and electrons.
This study explores the development and characterization of hard carbon anodes for sodium-ion batteries produced from waste coffee grounds, synthesized at both 1000 °C and 1500 °C. Importantly, this work highlights the potential of using biomass-derived hard carbons as sustainable and effective material for anode for sodium-ion batteries, contributing to the advancement of energy storage systems with increasing global demands for environmentally friendly and cost-effective technologies. The research focuses on the electrochemical performance of these hard carbons, examining how different carbonization temperatures impact their structural and electrochemical properties. Utilizing advanced analytical methods, the structural changes correlating with temperature increase were identified, including modifications in carbon atom arrangements, which significantly influence the electrochemical behaviors of the hard carbons. Our research specifically focuses on how the structural differences affect the division of capacity contribution from sloping region (above 0.1 V) and plateau regions (below 0.1 V). Electrochemical test results revealed that hard carbon with higher degree of order and reduced microstructural defects, demonstrated improved capacity values. At the same time, the highly ordered hard carbon exhibits drastic capacity loss upon increasing of current densities. The results from this study not only advance our understanding of hard carbons but also open pathways for the future exploration of hard carbons for additional improvements.
Iron selenides with high capacity and excellent chemical properties have been considered as outstanding anodes for alkali metal-ion batteries. However, its further development is hindered by sluggish kinetics and fading capacity caused by volume expansion. Herein, a series of FeSe2 nanoparticles (NPs)-encapsulated carbon composites were successfully synthesized by tailoring the amount of Fe species through facile plasma engineering and followed by a simple selenization transformation process. Such a stable structure can effectively mitigate volume changes and accelerate kinetics, leading to excellent electrochemical performance. The optimized electrode ( FeSe2@C2) exhibits outstanding reversible capacity of 853.1 mAh g− 1 after 150 cycles and exceptional rate capacity of 444.9 mAh g− 1 at 5.0 A g− 1 for Li+ storage. In Na+ batteries, it possesses a relatively high capacity of 433.7 mAh g− 1 at 0.1 A g− 1 as well as good cycle stability. The plasma-engineered FeSe2@ C2 composite, which profits from synergistic effect of small FeSe2 NPs and carbon framework with large specific surface area, exhibits remarkable ions/electrons transportation abilities during various kinetic analyses and unveils the energy storage mechanism dominated by surface-mediated capacitive behavior. This novel cost-efficient synthesis strategy might offer valuable guidance for developing transition metal-based composites towards energy storage materials.
Si-based anodes are promising alternatives to graphite owing to their high capacities. However, their practical application is hindered by severe volume expansion during cycling. Herein, we propose employing a carbon support to address this challenge and utilize Si-based anode materials for lithium-ion batteries (LIBs). Specifically, carbon supports with various pore structures were prepared through KOH and NaOH activation of the pitch. In addition, Si was deposited into the carbon support pores via SiH4 chemical vapor deposition (CVD), and to enhance the conductivity and mechanical stability, a carbon coating was applied via CH4 CVD. The electrochemical performance of the C/Si/C composites was assessed, providing insights into their capacity retention rates, cycling stability, rate capability, and lithium-ion diffusion coefficients. Notably, the macrostructure of the carbon support differed significantly depending on the activation agent used. More importantly, the macrostructure of the carbon support significantly affected the Si deposition behavior and enhanced the stability by mitigating the volume expansion of the Si particles. This study elucidated the crucial role of the macrostructure of carbon supports in optimizing Si-based anode materials for LIBs, providing valuable guidance for the design and development of high-performance energy-storage systems.
In this study, carbon coating was carried out by physical vapor deposition (PVD) on SiOx surfaces to investigate the effect of the deposited carbon layer on the performance of lithium-ion batteries as a function of the asphaltene content of petroleum residues. The petroleum residue was separated into asphaltene-free petroleum residue (ASF) and asphaltene-based petroleum residue (AS) containing 12.54% asphaltene by a solvent extraction method, and the components were analyzed. The deposited carbon coating layer became thinner, with the thickness decreasing from 15.4 to 8.1 nm, as the asphaltene content of the petroleum residue increased, and a highly crystalline layer was obtained. In particular, the SiOx electrode carbon-coated with AS exhibited excellent cycling performance with an initial efficiency of 85.5% and a capacity retention rate of 94.1% after 100 cycles at a current density of 1.0 C. This is because the carbon layer with enhanced crystallinity had sufficient thickness to alleviate the volume expansion of SiOx, resulting in stable SEI layer formation and enhanced structural stability. In addition, the SiOx electrode exhibited the lowest resistance with a low impedance of 23.35 Ω, attributed to the crystalline carbon layer that enhanced electrical conductivity and the mobility of Li ions. This study demonstrated that increasing the asphaltene content of petroleum residues is the simplest strategy for preparing SiOx@C anode materials with thin, crystalline carbon layers and excellent electrochemical performance with high efficiency and high rate performance.
In this study, ester co-solvents and fluoroethylene carbonate (FEC) were used as low-temperature electrolyte additives to improve the formation of the solid electrolyte interface (SEI) on graphite anodes in lithium-ion batteries (LIBs). Four ester co-solvents, namely methyl acetate (MA), ethyl acetate, methyl propionate, and ethyl propionate, were mixed with 1.0 M LiPF6 ethylene carbonate:diethyl carbonate:dimethyl carbonate (1:1:1 by vol%) as the base electrolyte (BE). Different concentrations were used to compare the electrochemical performance of the LiCoO2/ graphite full cells. Among various ester co-solvents, the cell employing BE mixed with 30 vol% MA (BE/MA30) achieved the highest discharge capacity at − 20 °C. In contrast, mixing esters with low-molecular-weight degraded the cell performance owing to the unstable SEI formation on the graphite anodes. Therefore, FEC was added to BE/MA30 (BE/MA30-FEC5) to form a stable SEI layer on the graphite anode surface. The LiCoO2/ graphite cell using BE/MA30-FEC5 exhibited an excellent capacity of 127.3 mAh g− 1 at − 20 °C with a capacity retention of 80.6% after 100 cycles owing to the synergistic effect of MA and formation of a stable and uniform inorganic SEI layer by FEC decomposition reaction. The low-temperature electrolyte designed in this study may provide new guidelines for resolving low-temperature issues related to LIBs, graphite anodes, and SEI layers.