북극에 대한 관심이 높아지면서 쇄빙연구선의 필요성이 점점 커지고 있다. 특히 우리나라의 경우 2009년 진수된 7,500톤급의 아라온호가 유일한 쇄빙연구선인데, 현재 아라온호만으로는 북극과 남극의 관련 연구를 수행하는데 어려움이 있다. 이에 해양수산부에서는 제2쇄빙연구선의 건조를 추진 중에 있는데 제2쇄빙연구선 건조의 필요성과 규모의 적정성에 대한 논란이 있으므로 이러한 논란을 줄이고 보다 합리적인 의사결정을 위해서는 제2쇄빙연구선의 경제적 가치를 추정하는 것이 중요하다. 본 연구는 비시장재화의 가치측정방 법론인 조건부 가치측정법을 활용하여 제2쇄빙연구선의 경제적 편익을 산정하였다. 특히 본 연구의 추정방법과 관련하여 통상적인 CVM 은 가정되는 분포의 형태와 추정모형에 따라서 WTP 분석결과에 편차가 발생하게 된다. 이에 본 연구에서는 베이지안 추정법(Bayesian approach)을 활용한다. 분석결과에 따르면 가구당 연간 평균 WTP는 1,999원으로 추정되었으며 이를 전국 가구 수로 확대한 제2쇄빙연구선 건조 사업에 대한 총편익은 연간 약 373.9억 원인 것으로 산정되었다.
기존 건축물의 구조 안전성평가와 보수 보강 시에는 해당 건축물의 상태를 정확히 알기 위해 현장 또는 실험실에서의 실험을 수행하는 경우가 많고 최초설계 단계와 다르게 시공된 건축물의 실제 상태 등을 구조해석 모델에 반영하게 된다. 이 경우, 각종 실험값을 전통적인 통계학적 방법은 구조기술자가 지닌 경험과 지식은 구조모델링 및 해석에서 아무런 가치를 더할 수가 없다. 본 논문은 현장 및 실험실에서 얻은 단순한 실험값을 구조기술자의 축적된 경험과 지식을 변수로 활용하여 보다 유효하게 구조해석 모델에 필요한 데이터로 개선하는 방법으로서 통계학적인 베이스 경신법을 이용한 안전성평가 방법에 대해 살펴보았다. 구조기술자의 적절한 판단이 변수로서 포함되면 적은 개수의 샘플 수로도 비교적 정확한 값의 최종 예측값을 산정할 수 있어 전통적인 통계학적 접근에 비해 보다 실제값에 근접한 예측값을 구할 수 있는 것을 확인하였다.
In the tanker industry, there are a lot of uncertain conditions that tanker companies have to deal with.For example, the global financial crisis and economic recession, the increase of bunker fuel prices and global climate change. Such conditions have forced tanker companies to change tankers speed from full speed to slow speed, extra slow speed and super slow speed. Due to such conditions, the objective of this paper is to present a methodology for determining vessel speeds of tankers that minimize the cost of the vessels under such conditions. The four levels of vessel speed in the tanker industry will be investigated and will incorporate a number of uncertain conditions. This will be done by developing a scientific model using a rule-based Bayesian reasoning method. The proposed model has produced 96 rules that can be used as guidance in the decision making process. Such results help tanker companies to determine the appropriate vessel speed to be used in a dynamic operational environmental.
This paper proposes an emotion classifier from EEG signals based on Bayesʼ theorem and a machine learning using a perceptron convergence algorithm. The emotions are represented on the valence and arousal dimensions. The fast Fourier transform spectrum analysis is used to extract features from the EEG signals. To verify the proposed method, we use an open database for emotion analysis using physiological signal (DEAP) and compare it with C-SVC which is one of the support vector machines. An emotion is defined as two-level class and three-level class in both valence and arousal dimensions. For the two-level class case, the accuracy of the valence and arousal estimation is 67% and 66%, respectively. For the three-level class case, the accuracy is 53% and 51%, respectively. Compared with the best case of the C-SVC, the proposed classifier gave 4% and 8% more accurate estimations of valence and arousal for the two-level class. In estimation of three-level class, the proposed method showed a similar performance to the best case of the C-SVC.
보증 데이터를 통해 제품의 수명 및 형상모수를 추정할 때 최우추정법과 같은 전통적인 통계 분석방법(Classical Statistical Method)을 많이 사용하였다. 그러나 전통적인 통계 분석방법을 통해 수명과 형상모수의 추정 시 표본의 크기가 작거나 불완전한 경우 추정량의 신뢰성이 떨어진다는 단점이 있고 또 누적된 경험과 과거자료를 충분히 이용하지 못하는 단점도 있다. 이러한 문제점을 해결하기 위해 모수의 사전분포를 가정하는 베이지안(Bayesian) 기법의 적용이 필요하다. 하지만 보증 데이터분석에 있어서 베이지안 기법을 이용한 연구는 아직 미흡한 실정이다.
본 연구에서는 수명분포가 와이블 분포를 갖는 보증데이터를 활용하여 모수 추정의 효율성을 비교 분석하고자 한다. 이를 위해 와이블 분포의 모수가 대수정규분포를 따르는 사전분포를 갖는 베이지안 기법과 전통적 통계기법인 생명표법(Actuarial method)을 활용하여 추정량을 도출하고 비교 분석하였다. 이를 통해 충분한 관측 데이터를 확보할 수 없는 경우에 베이지안 기법을 이용한 보증 데이터 분석방법의 성능을 확인하고자 한다.
This paper describes the Bayesian approach for reliability demonstration test based on the samples from a finite population. The Bayesian approach involves the technical method about how to combine the prior distribution and the likelihood function to pro
We predict the earthquake rate in Korea following Bayesian approach. We make a model that can utilize the data to predict other levels of earthquake. An event tree model which is a frequently used graphical tool in describing accident initiation and escalation to more severe accident is transformed into an influence diagram model. Prior distributions for earthquake occurrence rate and probabilities to escalating to more severe earthquakes are assumed and likelihood of number of earthquake in a given period of time is assessed. And then posterior distributions are obtained based on observed data. We find that the minor level of earthquake is increasing while major level of earthquake is less likely.
We construct the procedure to predict safety accidents following Bayesian approach. We make a model that can utilize the data to predict other levels of accidents. An event tree model which is a frequently used graphical tool in describing accident initiation and escalation to more severe accident is transformed into an influence diagram model. Prior distributions for accident occurrence rate and probabilities to escalating to more severe accidents are assumed and likelihood of number of accidents in a given period of time is assessed. And then posterior distributions are obtained based on observed data. We also points out the advantages of the bayesian approach that estimates the whole distribution of accident rate over the classical point estimation.
This paper is intended to compare the hazard rate estimations from Bayesian approach and maximum likelihood estimate(MLE) method. Hazard rate frequently involves unknown parameters and it is common that those parameters are estimated from observed data by
Intrusion Detection System (IDS) is intended to detect anomalous usages or attacks on system and network. Even though many IDS models have been developed, they still may have problems, such as involvement of components contaminated by anomalous process, in detecting anomalous behavior patterns. To distinguish anomalous patterns from normal patterns, we propose a Bayesian approach which includes the presentation of the relations among normal pattern components.
실제 구조물에 있어 확률, 통계 및 이론으로 구해진 랜덤성을 갖는 객관적 불확실성뿐만 아니라 설계자의 경험이나 공학적 판단에 의해 주관적으로 평가되는 인간오차나 시공중의 과오 또는 구조설계에 미치는 사회적, 정치적 및 경제적 요청 등의 퍼지성을 갖는 주관적 불확실성이 존재하기 때문에 현실적으로 랜덤성과 퍼지성을 동시에 고려한 실뢰성평가 즉, 안전성평가에 대한 퍼지이론의 도입이 필수 불가결하다. 따라서 본 연구에서는 기존 구조물의 객관적주관적 불확실성을 동시에 고려한 신뢰성해석방법으로 베이즈의 의사결정이론에 퍼지이론을 병합한 퍼지-베이즈 신뢰성해석 알고리즘을 개발하여 건축구조물의 신뢰성평가 및 안전성평가에 적용하여 분석하였다.
Bayesian Approach for efficient collapse response assessment of structure is used in this study. The approach facilitates integration preliminary information of risk assessment with numerical analysis results to get more efficient fragility assessment. We can get the preliminary information from different sources, including professional experience, information on the building design criteria, experimental results and simplified linear dynamic analysis. The combination of prior collapse risk information with nonlinear analysis simulations aims to improve computational and statistical efficiency. In this study, we considered a 62m cantilever and independent intake tower to assess its seismic fragility. The approach provides significant improve the statistical and computational efficiency of seismic fragility as well as precise confidence band of fragility curve compared to alternative method.