An assessment was made of the fumigant toxicity of 20 constituents from catnip oil and another additional five previously identified compounds of the oils and control efficacy of three experimental spray formulations containing catnip oil (1, 0.5 and 0.1% sprays) to females from B- and neonicotinoid-resistant Q-biotypes of Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae). Spathulenol (LC50, 0.39 μg/cm3) and thymol (0.45 μg/cm3) were the most toxic compounds, followed by carvacrol, α-terpineol, nerol, linalool, menthol and eugenol toward Q-biotype females (0.85–1.24 μg/cm3). The toxicity of these compounds was virtually identical toward both biotype females, indicating that the terpenoids and the insecticides (neonicotinoids and dichlorvos) do not share a common mode of action or elicit cross-resistance. The 0.5% spray of oil formulation resulted in > 80% mortality toward both biotype females. Global efforts to reduce the level of toxic synthetic insecticides in the agricultural environment justify further studies on catnip oil-derived materials as potential contact-action fumigants for the control of B. tabaci populations.
담배가루이(Bemisia tabaci)는 바이러스 매개 역할과 함께 참외에 심각한 경제적 피해를 주고 있다. 담배가루이는 기주 작물과 농약 감수성 정도에 따라 다양한 생태형으로 분류되고 있다. 본 연구는 안동시 풍천면에 소재한 참외밭에서 성충을 채집하여 PCR 분자진단기법으로 동정하 였다. 전체 11 곳의 채집 장소에서 Q 생태형 담배가루이를 진단하였고, 이 가운데 4 곳의 채집 장소에서 B 생태형도 검출되었다. 이러한 결과는 경북지역 참외 재배지에서 담배가루이가 발생한다는 최초의 보고이며, 특히 두 생태형이 동일한 재배지에 혼재한다는 것을 나타낸다.
The hemipteran whitefly Bemisia tabaci (Gennadius) is one of the most destructive pests damaging more than 600 agricultural crop species worldwide. The B and Q biotypes are most widely spread in Korea but they are not distinguishable based on morphological characters. In order to search for protein markers that can be employed for rapid and accurate diagnosis of biotypes, two-dimensional PAGE (2DE) in conjunction with mass spectroscopic analysis were conducted. Eleven biotype-specific spots were repeatedly identified during three repetitions of 2DE and analyzed by Q-TOF. One of the B type-specific protein spots was identified as carboxylesterase 2 (Coe2). The transcript level of coe2 was determined to be 6 times higher in B type than in Q type by quantitative real-time PCR. In addition, comparison of genomic DNA sequence of coe2 between B and Q types identified a biotype-specific intron, from which specific primer sets were designed. One-step PCR using these biotype-specific primers successfully distinguished the two biotypes in a high accuracy. Availability of the biotype-specific protein and DNA markers will greatly improve the detection of B. tabaci biotype in the field.
Nymphal development of the B and Q biotypes of Bemisia tabaci was normal on all seven tomato varieties tested. However, their nymphal development was different on red pepper varieties. B biotype was not normally developed on nine red pepper varieties tested. On the contrary, Q biotype was normally developed, but its adult emergence rate was very low in Nokkwang variety than in other eight varieties. The EPG analysis of the feeding behavior of Bemisia tabaci showed that B and Q biotypes had different duration of phloem phases on red pepper. Q biotype showed longer phloem phases than B biotype. On Nokkwang variety, Q biotype had short phloem phases and did not prefer to feed on Nokkwang variety. Interestingly, Q biotype was found to have long duration of phloem phases on eight red pepper varieties, but B biotype did not prefer to feed on red pepper varieties. However, both biotypes did not show any difference in feeding time on tomato varieties.
Tobacco whitefly-Bemisia tabaci is considered one of the most important pests in tropical and subtropical agriculture, as well as in production systems in glasshouses in temperate zones. Principle research on the identity of B. tabaci began with the recognition of more than one biotype differing in life history parameters, host plant associations, plant-related damage and insecticide resistance. Our laboratory strains of B. tabaci were identified and classified as biotype B and Q, through mtCOI PCR. Also, they were tested for their host plant preference and reaction to different insecticide. Biotype Q prefers to feed on red pepper and tomato, was less susceptible to tested insecticides, for instance acetamipirid, spinosad and thiamethoxam, than the biotype B (feed on tomato alone). There has been a report on the presence of gut bacteria in B. argentifolii (= B. tabaci biotype B) and its influence on the host insect processes. Hence, as a further pursuit, we examined our laboratory B. tabaci biotypes B and Q for their gut bacteria, whether these two biotypes are differed with each other. Gut bacterial strains isolated by standard surface sterilization method was identified through 16S rRNA gene sequence. Gut bacterial strains of B. tabaci biotypes B and Q and their close relatives retrieved from the public database (NCBI) indicated that the biotype B was less diversified only with four genera viz., Bacillus, Micrococcus, Pseudomonas and Staphylococcus, whereas the biotype Q diversified with six such as Bacillus, Janibacter, Micrococcus, Staphylococcus, Stenotrophomonas, and Streptomyces. Results of the present investigation suggesting that there may be a relationship with gut bacterial strains and susceptibility to insecticides and host plant preference of B. tabaci biotype B and Q.
Biotype Q of Sweetpotato whitefly, Bemisia tabaci (Homoptera: Aleyrodidae) was raised in seven tomatoes and eight red pepper varieties; however, biotype B did not grow in red pepper varieties. Rokkusanmaru variety of tomato and Cheongpungdaegun variety of red pepper showed the highest susceptibility to biotype B and Q. HPLC (ELSD Detector) analysis showed that the presence of sugars such as erythritol, xylose, xylitol, fructose, glucose, mannitol, and sucrose in red pepper varieties; erythritol, xylose, fructose, glucose, and mannitol was in tomato varieties. Tomato varieties lacks xylitol and sucrose, which were present in the red pepper varieties. Subsequent bioassay with these two sugars, sucrose did not show significant difference between two biotypes; however, xylitol was showed only repellent effect against B biotype. Therefore, it seems that xylitol may play a key role in the selection of host plant by biotype B of sweetpotato whitefly.
The feeding behaviors of 2 biotypes (type B and Q) of tobacco whitefly, Bemisia tabaci, were monitored using EPG technique on tomato and pepper plants treated 3 insecticides for controlling whiteflies, for examples, acetamiprid, spinosad and thiamethoxam. After treatment of three insecticides with recommended concentrations to tomato and pepper plants, EPG waveforms were recorded during 6 hours. The characteristic patterns of feeding behaviors investigated were as follows, time consumed by withdrawal of proboscis, total non-penetration time, total stylet pathway pattern time and total phloem feeding time. There was somewhat difference among 3 insecticides tested. As a result of investigation of total duration showed the stylet pathway activity due to the reaction against all tested insecticides, the Q biotype showed fewer time than those from the B biotype. The B biotype showed more frequent stylet pathway activity patterns during whole recording time and a shorter phloem ingestion time than those from the Q biotype. In result of prior np (non-penetration) time representing the reaction against the insecticide treated, the time of B biotype was more faster than that of the Q biotype, so it was considered that the B biotype was more sensitive to the tested insecticides. Therefore, our results revealed a clear difference in feeding behaviour between the Band Q biotypes of B. tabaci. Also, it was investigated that B biotype was susceptible to the 3 insecticides.