검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 5

        1.
        2024.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study investigated the effect of manufacturing variables (including heating temperature) on the physicochemical properties of nanoemulsion delivery system (NDS) prepared with WPI/Inulin Maillard conjugate and to study how the physicochemical properties of NDS affected the bioaccessibility of lycopene. The functional properties of the WPI/Inulin Maillard conjugate were determined using the OPA method, interfacial tension, and EAI. The physicochemical and morphological properties of NDS were measured using Zetasizer and TEM, respectively. The bioaccessibility of lycopene in the WPI/Inulin Maillard conjugate based NDS was measured using a spectrophotometer. As the pH and heating temperature increased, the Maillard conjugation efficiency increased significantly (p<0.0001). The emulsifying properties of the WPI/Inulin Maillard conjugate were greater than those of WPI. A WPI/Inulin Maillard conjugate based NDS with a size of ~180 nm was observed in TEM images while the droplet size of the WPI/Inulin Maillard conjugate based NDS was smaller than that of the WPI based NDS. During in vitro digestion, no significant changes in the droplet size and PDI of NDS were observed in the mouth and stomach phases, whereas in the intestinal phase, the droplet size and PDI increased significantly (p<0.0001). Moreover, the bioaccessibility of lycopene in the WPI/Inulin Maillard conjugate based NDS significantly increased (p<0.0001), compared with that of the WPI based NDS. There was a significant (p<0.05) increase in the bioaccessibility of lycopene with a decrease in the interfacial tension and droplet size of NDS. In conclusion, WPI/Inulin Maillard conjugate based NDS can be used to enhance the bioaccessibility of lycopene.
        4,200원
        5.
        2018.04 구독 인증기관·개인회원 무료
        Vitamin A, particularly all-trans retinol is excellent for anti-aging but is sensitive to oxygen, heat and light and has low solubility in water. In this study, retinol was encapsulated within oil-in-water (O/W) emulsion, protein-based particle and cycloamylose(CA). And then, it confirms that retinol contained in each delivery system is stable to UV, pH, and temperature and finally measures bioaccessibility. O/W emulsion was compared according to the type and concentration of emulsifier. UV stability of retinol increased with increasing oil concentration. More than 10 wt% of oil was required to maintain stable retinol (50% residual after 24 hours of irradiation). Using anionic emulsifier, retinol had unstable storage stability regardless of oil concentration and temperature. Protein based particle was compared according to the type of stabilizer and polysaccharide. UV stability of retinol was highest in pectin-coated particles. However, 20% retinol remains after 6 hours of irradiation and is vulnerable to UV compared to other delivery systems. In pH stability, pectin-coated particles also stably retained retinol. Inclusion complex of retinol and CA was compared according to the concentration of CA. When CA was used, the residual amount of retinol to UV was high (50% residual after 24 hours of irradiation) regardless of the concentration of the host molecule. In the case of storage stability, retinol remained significantly higher regardless of temperature when cycloamylose was used. It was finally confirmed bioaccessibility each of retinol delivery system. O/W emulsion was determined by emulsifier type, protein-based particle by coating agent, and inclusion complex by CA concentration. All O / W emulsions retained more than 50% retinol, protein based particles retained more than 80% retinol, and inclusion complex retained more than 70% retinol. The bioaccessibility of pure retinol is about 20%. This study provides important information for designing effective delivery systems for improving the stability of retinol.