검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 7

        2.
        2016.12 KCI 등재 서비스 종료(열람 제한)
        Biochemical methane potential (BMP) of residual wastes from transesterification was tested to safely recycle carcass via rendering process. The carcass was obtained from a buried site for avian influenza (AI) infected poultry. Rendered lipid generated by a pilot-scale high-pressure rendering process was the main source of transesterification for biodiesel recovery. To test the feasibility of waste-to-energy approach for AI infected carcass, we compared the BMPs of various fractions of rendered materials from the carcass. BMP and specific methanogenic activity results indicate that transesterification waste shows better digestibility than that of rendered lipid, and the digestion performance was comparable to that of liquid residue. Biogas yields of glycerol, rendered lipids, and liquid residue were estimated as 0.11 L/g chemical oxygen demand (COD), 0.06 L/g COD, and 0.17 L/g COD, respectively. Regression analysis support that biogas production rate of glycerol (21 mL/g COD/d) was much faster than that of lipid (7 mL/g COD/d) while that of liquid residue was similar (24 mL/g COD/d). In summary using transesterification waste as a bioresource for bioenergy conversion can be a viable and sustainable option for the complete termination of burial site.
        3.
        2016.04 KCI 등재 서비스 종료(열람 제한)
        This study was conducted to investigate the effects of different carbon sources on the anaerobic fermentation characteristics in the startup phase using the biochemical methane potential test. The treatments for this experiment were combinations of carbon sources (starch, cellulose, and xylan). Anaerobic fermentation was done at 37oC for 18 days with agitation and pH, ammonia nitrogen, volatile solids reduction, gas production, methane content, and methane production were investigated at 0, 1, 2, 3, 4, 5, 7, 9, 12, 15, and 18 days after incubation in triplicate. In the experiment, the pH was changed depending on the characteristics of the carbon source. The ammonia nitrogen concentration was the highest in the starch-treated group at 7, 12, and 15 days after incubation (P < 0.05). Cumulative volatile solids reduction was the highest in the cellulose-treated group at 18 day after incubation (P < 0.05) and cumulative gas production was higher in the cellulose-treated group than for other two treatments at 18 day after incubation (P < 0.05). Methane content was the lowest in the xylan-treated group at 18 days after incubation (P < 0.05). Cumulative methane production was higher in the xylan-and cellulose-treated group than in the starch-treated group at 18 days after incubation (P < 0.05). In this study, the carbon sources had significant effects on anaerobic fermentation characteristics; especially, the carbon source was shown to have a positive effect on the operation time and hydraulic retention time for the anaerobic digestion startup phage. Therefore, carbon sources should be considered systematically for efficient anaerobic digestion of organic waste.
        4.
        2013.10 KCI 등재 서비스 종료(열람 제한)
        In this study, the feasibility of the biogas production by anaerobic digestion with agricultural byproducts, which are stems and leaves of hot pepper or sweet pepper from one of the agricultural villages in South Korea, was investigated. The physico-chemical compositions of the agricultural byproducts of hot and sweet pepper were analyzed and they were found to be favorable with anaerobic digestion. Theoretical methane potentials of the test materials were estimated as 393.1 L CH4/kg VS for hot pepper and 372.6 L CH4/kg VS for sweet pepper. Biochemical methane potentials were analyzed by Biochemical Methane Potential (BMP) test and those of hot pepper and sweet pepper were 107.9 and 193.4 L CH4/kg VS, respectively. Silage was chosen to be long-term storage method for biogasification. Biochemical methane potential of hot pepper was increased by silage storage, while that of sweet pepper was decreased. In the case of silage chopping size, ensiled material with 30 mm size showed higher biochemical methane potential than that with 3 mm size. Most of test materials showed higher biochemical methane potentials with microbial additives containing Bacillus Circulans than that containing Bacillus Subtilis.