Thin-film shape technology is recognized for its core technology to enhance the technology of LCD, PDP, semiconductor manufacturing processes, hard disks and optical disks, and is widely used to form coated thin films of products. In addition, resistance(electron beam filament) technology for heating is used to manufacture filament for ion implants used in semiconductor manufacturing processes. By establishing an electronic beam filament production system and developing seven specifications of electronic beam filament, it is contributing to improving trade dynamics and increasing exports to Japan through localized media of theoretical imports to domestic companies. In this study, CAE analysis was performed after setting electron beam filament specification and development objectives, facilities and fabrication for electron beam filament production, electron beam filament JIG & fixture design and fabrication followed by electron beam filament prototype. Then, the automation and complete inspection equipment of the previously developed electronic beam filament manufacturing facilities was developed and researched to mass-produce them, to analyze and modify prototypes, design and manufacture automation facilities, and finally, to design and manufacture the complete inspection equipment. In this paper, mainly electron beam filament specification analysis and development objectives and CAE analysis were dealted with.
In this paper, to improve the optical quality of aspherical plastic lenses for mobile use, the optimal molding conditions that can minimize the phase difference are derived using injection molding simulation, design of experiments, and machine learning. First, factors affecting the phase difference were derived using the design of the experiment method, and a data set was created using the derived factors, followed by the machine learning process. After predicting the model trained using the generated training data as test data and verifying it with the performance evaluation index, the model with the best predictive performance was the random forest model. Therefore, to derive the optimal molding conditions, random forests were used to predict 10,000 random pieces of data. As a result of applying the derived optimal molding conditions to the injection molding simulation, the phase difference of the lens could be reduced by 8.2%.
Valves are one of the indispensable components in modern industry. Filling and de-pressure connectors in rocket valves used for space launch vehicles are very important parts for smooth fluid supply. For this reason, an optimized design that can improve efficiency, miniaturization, weight reduction, and safety of the valve at the same time is required. In this work, flow analysis and structural analysis were performed through 3D modeling using computational numerical analysis for open type filling and de-pressure valves. As results, the flow velocity and pressure distribution of the fluid were analyzed through the flow analysis of valve, and stress distribution was conducted in structural analysis. Through this study, it is consequently expected to provide valves of various specifications by performing production and performance test evaluation of development prototypes.
Recently, the demand for reliability verification is increasing while designing and manufacturing molds using injection molding computer aided engineering(CAE). When performing flow analysis verification, a spiral mold is produced and compared with CAE. Because of the spiral shape, we needed a comparative evaluation with the flow distance of products with different forms. So, we compared the weight and flowed length using CAE. Variables are the change in the width of the spiral shape and the shape of the bar and plate. When the width of the spiral shape is 23mm rather than 15mm, the flow distance flows 30∼70mm more, with a maximum difference of 13%. As a result of comparing the spiral shape and the long square shape with the same width, the spiral shape had a flow distance of 60 to 105mm further, and a difference of up to 28% was found. As a result of comparing the plate shape and the spiral shape with a 15mm width product, the spiral shape has a flow distance of 310∼380mm further, and a difference of up to 82% is different.
In turbopump type liquid rocket engines, ignition and starting are known to be the most unstable and risky section among all operating sections of the projectile. The operation of the liquid rocket engine is the process of ignition and combustion of the main combustor after the turbo pump is driven into a stable section due to the turbine driving of the turbo pump and the ignition and combustion of the gas generator by the pyro starter. In this process, the driving of related components directly influences each other, so each component must be operated with sufficient reliability. In particular, if the igniter does not supply sufficient ignition energy at a predetermined time, an explosion may occur due to stagnation of the fuel/oxidant mixture, so reliability is more important. In this study, the fracture analysis of the gas generator igniter rupture disk according to the shape was performed using computational analysis. As a result, comparative analysis was performed to obtain the optimal dimensions according to each variable condition.
The molybdenum cup and molybdenum pin, which are the main materials of the molybdenum electrode used for the LCD BLU CCFL electrode, have not been developed in Japan and all of them are imported and used from Japan, is giving a competitive burden. In this research, to develop the manufacturing technology of molybdenum pin used for CCFL electrode of LCD BLU, development of linear processing technology, development of molybdenum wire surface treatment technology, development of wire cutting technology, production of molybdenum pin, design and fabrication of JIG and Fixture for inspection, molybdenum pin prototyping and analysis, and development of 100% molybdenum pin inspection technology. In this paper, especially, research on prototype manufacturing and CAE analysis is treated.
Recently, the use of tubes in the manufacturing of the automobile parts has increased and therefore many automotive manufactures have tried to use hydro-forming technology. The hydro-forming technology may cause many advantages to automotive applications in terms of better structural integrity of the parts, lower cost from fewer part count, material saving, weight reduction, lower spring-back, improved strength and durability and design flexibility. In this study, the whole process of sub-frame parts development by tube hydro-forming using steel material is presented. At the part design stage, it requires feasibility study and process design aided by CAE (computer aided design) to confirm hydro-formability in details. Overall possibility of hydro-formable sub-frame parts could be examined by cross sectional analyses. All the components of prototyping tools are designed and interference with press is examined from the point of geometry and thinning.
In product development, different divisions and businesses often have heterogeneous CAD/CAE systems and methods for expressing product data, and addressing this heterogeneity creates additional costs and causes longer development periods. To ensure successful collaboration in the design process, it is therefore imperative that different CAD, CAE, and other related systems be managed in an organic and integrated manner from the initial stages of product development. Therefore, this study suggests an integrated CAD/CAE system including optimal design in a more effective and integrated manner but also to support interfacing and the collective use of design and analysis tools. To validate the proposed method, a stiffened plate example is taken as an example. It is found that the proposed method could overcome the bottleneck of CAD and CAE such as transferability of data, though CATIA and ANSYS are used at the moment.
A most important progress in civilization was the introduction of mass production. One of main methods for mass production is die-casting molds. Due to the high velocity of the liquid metal, aluminum die-casting is so complex where flow momentum is critical matter in the mold filling process. Actually in complex parts, it is almost impossible to calculate the exact mold filling performance with using experimental knowledge. To manufacture the lightweight automobile bodies, aluminum die-castings play a definitive role in the automotive part industry. Due to this condition in the design procedure, the simulation is becoming more important. Simulation can make a casting system optimal and also elevate the casting quality with less experiment. The most advantage of using simulation programs is the time and cost saving of the casting layout design. For a die casting mold, generally, the casting layout design should be considered based on the relation among injection system, casting condition, gate system, and cooling system. Also, the extent or the location of product defects was differentiated according to the various relations of the above conditions. In this research, in order to optimize the casting layout design of an automotive Oil Pan_BR2E, Computer Aided Engineering (CAE) simulation was performed with three layout designs by using the simulation software (AnyCasting). The simulation results were analyzed and compared carefully in order to apply them into the production die-casting mold. During the filling process with three models, internal porosities caused by air entrapments were predicted and also compared with the modification of the gate system and overflows. With the solidification analysis, internal porosities occurring during the solidification process were predicted and also compared with the modified gate system.
The vehicle weight and alternative light materials development like aluminum alloys are hot issues around the world. In order to obtain the goal of the weight reduction of automobiles, the researches about lighter and stronger suspension links have been studies without sacrificing the safety of automotive components. Therefore, in present study, the structure analysis of the torque strut links made by aluminum alloys (A356) was performed by using CAE (computer aided engineering) to investigate the light weight design process from the reference of the rear suspension torque strut link which was made by STKM11A steel and was already proven in the commercial market. Especially, the simulated maximum von Mises stresses after strength analysis were normalized as fatigue limit and these were converted to the WF (weight factor) of the same type as the fatigue safety factor suggested and named like that in present study. From these, it was suggested that the fatigue properties of the torque strut could be simply predicted only from this static CAE simulation.
In order to obtain the goal of the weight reduction of automobile components, the researches about lighter and stronger wheel carriers have been studied without sacrificing the safety of them. In this study, the weight reduction design process of wheel carrier could be proposed based on the variation of von-Mises stress contour by substituting an AA6061 (aluminum 6061 alloy) having tensile strength of 310 MPa grade instead of FCD600 Irons. From the stress analysis results before and after design modification, the stress relaxation was done at every given loading conditions. Therefore, it could be reached that this approach method could be well established and be contributed for light-weight design guide and the optimum design conditions of the automotive wheel carrier development.
This paper develops a fishing lamp mounting system which opens or closes a mounting rack according to a fishing situation. A developing fishing lamp mounting system is designed using CAD software. Members composing the fishing lamp mounting system are modeled with finite elements based on 3D CAD model. In addition, the fishing lamp mounting system is modeled with rigid bodies. A rigid body model of the fishing lamp mounting system is interfaced with finite element component models to develop a computational model of the fishing lamp mounting system for dynamic stress analysis. This paper performs a simulation with bouncing, rolling and pitching motion which describe a very rough sea condition. This paper manufactures a fishing lamp mounting system which is designed with CAD software and analyzed dynamic stress with CAE technique.
This study is making a product for the development of a process worm wheel of making a shape for gear for worm wheel without hobbing manufacturing process. Because of removing a hobbing process, plastic worm wheel for increased productivity and equivalent quality is produced in this molding. As the result, CAE manufacturing process for a EPS worm wheel of small and middle stage cars and hybrid vehicle is developed. Especially, the considerations for analysis results of worm wheel are as follows. the first, CAE analysis for worm wheel of first stage is considered. the second, CAE analysis for boss is considered. the third, CAE analysis for gear module strength of first stage is considered. Finally, the redesign of product drawings for troubled-considered in first stage try-out is considered in EPS worm wheel.
When manufacturing die casting mold, generally, the casting layout design should be considered based on the relation among injection system, casting condition, gate system, and cooling system. Also, the extent or the location of product defects was differentiated according to the various relations of the above conditions.
In this research, in order to optimizing casting layout design of an automobile part (Oil Pan_DX2E) Computer Aided Engineering (CAE) simulation was performed with two layout designs by using the simulation software (AnyCasting). The simulation results were analyzed and compared carefully in order to apply them into the production die-casting mold. During the mold filling with two models, internal porosities caused by air entrap were predicted and also compared by the modification of the gate system and the configuration of overflow. With the solidification analysis, internal porosities caused by the solidification shrinkage were predicted and also compared by the modification of the gate system.
Geometric configurations such as hull shape, wall thickness, stiffener layout, and type of construction materials are the key factors influencing the structural performance of pressure hulls. Traditional theoretical approach provides quick and acceptable solutions for the design of pressure hulls within specific geometric configuration and material. In this paper, alternative approaches that can be used to obtain optimal geometric shape, wall thickness, construction material configuration and stiffener layout of a pressure hull are presented. CAE(Computer Aided Engineering) based design optimization tools are utilized in order to obtain the required structural responses and optimal design parameters. Optimal elliptical meridional profile is determined for a cylindrical pressure hull design using metamodel-based optimization technique implemented in a fully-integrated parametric modeler-CAE platform in ANSYS. While the optimal composite laminate layup and the design of ring stiffener for a thin-walled pressure hull are obtained using gradient-based optimization method in OptiStruct. It is noted that the proposed alternative approaches are potentially effective for pressure hull design.
When manufacturing die casting mold, generally, the casting layout design should be considered based on the relation among injection system, casting condition, gate system, and cooling system. Also, the extent or the location of product defects was differentiated according to the various relations of the above conditions. In this research, in order to optimize casting design of an automobile part (Gear Box) Computer Aided Engineering (CAE) was performed by using the simulation software (ZَCast). The simulation results were analyzed and compared with experimental results. During the mold filling, internal porosities caused by air entrap were predicted and reduced remarkably by the modification of the gate system and the configuration of overflow. With the solidification analysis, internal porosities caused by the solidification shrinkage were predicted and reduced by the modification of the gate system. For making a better production dieَcasting tool, cooling systems on several thick areas are proposed in order to reduce internal porosities caused by the solidification shrinkage.