검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 60

        1.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study was aimed to determine the changes in CO2 concentration according to the temperatures of daytime and nighttime in the CO2 supplemental greenhouse, and to compare calculated supplementary CO2 concentration during winter and spring cultivation seasons. CO2 concentrations in experimental greenhouses were analyzed by selecting representative days with different average temperatures due to differences in integrated solar radiation at the growth stage of leaf area index (LAI) 2.0 during the winter season of 2022 and 2023 years. The CO2 concentration was 459, 299, 275, and 239 μmol·mol-1, respectively at 1, 2, 3, and 4 p.m. after the CO2 supplementary time (10:00-13:00) under the higher temperature (HT, > 18°C daytime temp. avg. 31.7, 26.8, 23.8, and 22.4°C, respectively), while it was 500, 368, 366, 364 μmol·mol-1, respectively under the lower temperature (LT, < 18°C daytime temp. avg. 22.0, 18.9, 15.0, and 13.7°C, respectively), indicating the CO2 reduction was significantly higher in the HT than that of LT. During the nighttime, the concentration of CO2 gradually increased from 6 p.m. (346 μmol·mol-1) to 3 a.m. (454 μmol·mol-1) in the HT with a rate of 11 μmol·mol-1 per hour (240 tomatoes, leaf area 330m2), while the increase was very lesser under the LT. During the spring season, the CO2 concentration measured just before the start of CO2 fertilization (7:30 a.m.) in the CO2 enrichment greenhouse was 3-4 times higher in the HT (>15°C nighttime temperature avg.) than that of LT (< 15°C nighttime temperature avg.), and the calculated amount of CO2 fertilization on the day was also lower in HT. All the integrated results indicate that CO2 concentrations during the nighttime varies depending on the temperature, and the increased CO2 is a major source of CO2 for photosynthesis after sunrise, and it is necessary to develop a model formula for CO2 supplement considering the nighttime CO2 concentration.
        4,000원
        2.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Ultra-violet (UV) light is one of abiotic stress factors and causes oxidative stress in plants, but a suitable level of UV radiation can be used to enhance the phytochemical content of plants. The accumulation of antioxidant phenolic compounds in UV-exposed plants may vary depending on the conditions of plant (species, cultivar, age, etc.) and UV (wavelength, energy, irradiation period, etc.). To date, however, little research has been conducted on how leaf thickness affects the pattern of phytochemical accumulation. In this study, we conducted an experiment to find out how the antioxidant phenolic content of kale (Brassica oleracea var. acephala) leaves with different thicknesses react to UV-A light. Kale seedlings were grown in a controlled growth chamber for four weeks under the following conditions: 20°C temperature, 60% relative humidity, 12-hour photoperiod, light source (fluorescent lamp), and photosynthetic photon flux density of 121±10 μmol m-2 s-1. The kale plants were then transferred to two chambers with different CO2 concentrations (382±3.2 and 1,027±11.7 μmol mol-1), and grown for 10 days. After then, each group of kale plants were subjected to UV-A LED (275+285 nm at peak wavelength) light of 25.4 W m-2 for 5 days. As a result, when kale plants with thickened leaves from treatment with high CO2 were exposed to UV-A, they had lower UV sensitivity than thinner leaves. The Fv/Fm (maximum quantum yield on photosystem II) in the leaves of kale exposed to UV-A in a low-concentration CO2 environment decreased abruptly and significantly immediately after UV treatment, but not in kale leaves exposed to UV-A in a high-concentration CO2 environment. The accumulation pattern of total phenolic content, antioxidant capacity and individual phenolic compounds varied according to leaf thickness. In conclusion, this experiment suggests that the UV intensity should vary based on the leaf thickness (age etc.) during UV treatment for phytochemical enhancement.
        4,200원
        3.
        2022.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 난방 개시 온도와 CO2 시비의 효율을 알아보기 위해 수행되었다. 난방 개시 온도 실험은 9℃, 12℃, 15℃로 구분하여 목표 온도보다 낮아지면 전기 온열기구가 작동하게 하였다. CO2 시비 농도 실험은 액화탄산가스를 이용하여 무 처리, 500μmol·mol-1, 800μmol·mol-1으로 7시부터 12시까 지 처리하였다. 생육 특성으로 초장, 경경, 엽수, 엽면적, 생체 중, 건물중을 조사하였고, 200g 넘는 과실만을 대상으로 수량 을 조사하여 경제성 분석을 하였다. 상위엽에 대한 광합성 측 정을 하여 처리에 따른 포화점을 산출하였다. 애호박의 광포화 점은 587μmol·m-2·s-1이였고 CO2 포화점은 702μmol·mol-1 이 였다. CO2에 의한 Amax값은 9℃, 12℃, 15℃, 500μmol·mol-1, 800μmol·mol-1 순으로 13.4, 17.8, 17.2, 19.6, 17.5μmol CO2·m-2·s-1이었다. 온도 실험에서 9℃는 생육과 착과가 정상 적으로 이루어지지 않았다. 12℃와 15℃는 9℃보다 높았지 만 생육과 생산에서 유의미한 차이를 보이지 않았다. CO₂ 농 도 실험은 생육에서 처리구간 유의한 차이를 보이지 않았지만 800μmol·mol-1의 생산성이 가장 좋았다. 이상의 결과를 종합 적으로 보면 난방 개시 온도는 15℃인 것은 작물 생육과 생산 에는 좋았지만 12℃와 유의적인 차이가 없어 경제적 측면에 서 난방 개시 온도를 12℃로 설정하는 것이 좋은 것으로 보이 며, CO2 시비 농도 800μmol·mol-1를 유지하는 것이 생산량 증가에 효과적이었다.
        4,000원
        9.
        2020.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 실험은 CAM 식물인 칼랑코에(Kalanchoe blossfeldiana) 에 이산화탄소 시비 및 다양한 일장처리를 통한 생육반응을 조사하여 탄소자원화 기술 도입 방안을 모색하고 고품질 분화 묘 생산을 하고자 수행되었다. 실험은 서울여자대학교 ICT스마트형 유리온실에서 실시하였으며, 공시 재료는 칼랑코에 Kalanchoe blossfeldiana ‘Lion’, ‘Fikalrudak’ 두 품종이다. 일장은 8시간, 12시간, 16시간으로 처리하였으며 이산화탄소는 22:00~04:00에 평균 400㎛ol・mol-1(대조구)와 800㎛ol・mol-1로 처리했다. 엽수는 칼랑코에 ‘Lion’ 품종의 경우, 8시간과 12시간 일장에서, 칼랑코에 ‘Fikalrudak’ 품종의 경우, 8시간 일장에서 이산화탄소 농도 상승에 따라 증가하였다. 초장은 품종에 관계없이 일장 8시간에서 이산화탄소 농도를 400㎛ol・mol-1에서 800㎛ol・mol-1로 증가시킬 때 감소하였다. 칼랑코에 ‘Lion’ 품종에서, 미성숙엽의 엽장과 엽폭은 이산화탄소 농도 상승에 따라 일장 8시간과 12시간에서 증가하였다. 하지만, 칼랑코에 ‘Fikalrudak’ 품종의 미성숙엽 엽장과 엽폭은 이산화탄소 농도에 영향을 받지 않아 품종에 따른 반응 차이가 있는 것으로 판단된다. 마디수는 품종과 일장에 관계없이 이산화탄소 농도를 800㎛ol・mol-1로 증가시켰더니 증가하였으며, 개화소요일 수는 이산화탄소 농도에 영향을 받지 않았다. 개화는 품종에 따라 차이가 있었으며 칼랑코에 ‘Lion’ 품종에서는 8시간과 12시간 일장에서, 칼랑코에 ‘Fikalrudak’ 품종에서는 8시간 일장에서 나타났다. 이상의 결과로 칼랑코에는 이산화탄소 농도에 관계없이 단일 조건에서만 효과적으로 개화하며, 이산화탄소 시비는 칼랑코에 잎의 생산과 마디 생산을 촉진시킬 수 있었 다. 그러나 이산화탄소 고농도 시비는 칼랑코에 개화 품질에 부정적인 영향을 줄 수 있으므로 시비 단계, 품종 등에 따른 적합한 시비 방법이 다르게 적용되어야 한다.
        4,000원
        10.
        2020.01 KCI 등재 구독 인증기관 무료, 개인회원 유료
        군락 광합성 모델의 도출을 위하여 생육 챔버가 필요하며, 이를 위한 광합성의 효율적인 측정 방법이 필요하다. 본 연구의 목적은 내부 환경 제어가 가능한 생육 챔버를 이용하여 광도 및 이산화탄소 농도 변수를 갖는 로메인 상추(Lactuca sativa L.)의 군락 광합성 곡선을 도출하는 방법을 확립하는 것이다. 실험에 사용한 상추는 식물공장 모듈에서 재배되었으며, 군락 광합성을 측정하기 위하여 아크릴로 제작된 생육 챔버(1.0x0.8x0.5m)를 이용하였다. 첫 번째로, 다음의 두 방법을 적용하여 측정된 군락 광합성 속도를 통해 각 방법의 시정수를 계산하여 비교하였다. 즉, 1) CO2 농도를 고정(1,000μmol·mol-1) 하고 광도를 변화(340, 270, 200, and 130μmol·m-2·s-1) 시키거나, 2) 광도를 고정(200μmol·m-2·s-1)하고 CO2 농도를 변화(600, 1,000, 1,400, and 1,800μmol·mol-1) 시켰다. 두 번째로, 1)과 2)의 방식을 적용하여 군락 광합성을 측정했을 때, 특정 광도(200μmol·m-2·s-1)와 특정 CO2 농도(1,000μmol·mol-1)에서 측정된 군락 광합성 속도 값을 비교하였다. 실험 결과 CO2 농도를 변화시키는 방식의 시정수는 광도를 변화시키는 방식에 비해 3.2배 큰 값을 나타내었다. 광도를 변화시키며 측정할 때 군락 광합성 속도는 1분 이내에 안정되었고, CO2 농도를 변화시킬 경우에는 6분 이상의 시간이 소요되었다. 따라서 광도를 변화시키는 측정 방식이 생육 챔버를 이용하여 작물의 군락 광합성 속도를 측정할 때 적합한 방식임을 확인하였다.
        4,000원
        12.
        2018.10 구독 인증기관·개인회원 무료
        이 연구는 떡갈나무(Quercus dentata Thunb. ex Murray) 유식물을 대상으로 대기 중의 CO2농도와 기온이 상승하였을 때 광(L), 수분(M), 유기물(N) 그리고 토성(S)의 변화에 따라 생육이 어떻게 변하는지 알아본 것이다. 떡갈나무는 낙엽활엽교목으로 전국 표고 800m이하의 산기슭, 산중턱 뿐 아니라 해변가의 야산이나 섬에도 잘 생육하며, 건조한 석회암 지역에서 우점종으로 분포하고 있다. CO2농도와 기온을 상승시킨 온난화처리구와 대기 중의 상태를 그대로 둔 대조구에서 광, 수분, 유기물 그리고 토성을 각각 4구배(1, 2, 3, 4)로 처리하였다. 각 구배 당 24개체씩 파종하여 2017년 3월부터 10월까지 8개월간 생육시킨 후 잎 수, 지하 부/지상부 길이 및 무게, 잎자루/잎몸/잎폭 길이 및 무게 그리고 비엽면적 등 20가지 형질을 측정하였다. 측정한 20가지 형질은 온난화, 광, 수분, 유기물 그리고 토성 환경에 의한 생육반응에서 통계적인 차이가 있었다. 특히 지하부의 반응은 수분이나 토성 보다 광조건에서 차이가 컸고, 이에 따라 식물체 무게와 지하부/지상부 비에도 영향을 주었다. 또한 잎면적은 모든 구배에서 대조구보다 처리구에서 높아지는 경향을 보였으며 특히 유기물을 처리하였을 때 대조구와 처리구 간의 통계적인 차이가 있었다. 이는 유식물이 지구온난화가 진행됨에 따라 광합성을 증가시키기 위한 적응으로 해석된다. 이 성과는 2018년 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임 (No. NRF-2018R1A2B5A01021358)
        13.
        2018.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Carnation (Dianthus caryophyllus L.) ‘Purple Beauty’ at micropropagation stage 3 was cultured under two levels each of medium sucrose concentration (0 and 30 g·L-1), photosynthetic photon flux density (50 and 200 μmol·m-2·s-1 PPFD), and CO2 concentration (350 and 1,000 μmol·mol-1), in a factorial experimental design, consisting of all eight possible treatment combinations. Shoot tip explants, obtained from in vitro-grown plantlets, were cultured on 50 mL agar-solidified Murashige and Skoog medium per container. Each culture container was sealed with a rigid lid vented by a high-efficiency particulate air filter attached to a 10 mm diameter hole made in the lid center, with an estimated number of 2.8 air exchanges per hour. All cultures were maintained for four weeks at 24°C/22°C (day/night) temperatures, 70%–80% relative humidity, and a 16 h/8 h (day/night) photoperiod was provided by white light-emitting diodes. The treatment combining high light intensity (200 μmol·m-2·s-1), high CO2 concentration (1,000 μmol·mol-1), and without supplementation of sucrose to the medium (i.e., photo-autotrophic conditions) resulted in better plantlet growth and development, with higher values being observed in terms of total fresh weight, tissue water content, leaf length, leaf width, and total chlorophyll content than in plantlets grown under the other treatments.
        4,000원
        14.
        2018.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        작물의 생산량은 광합성과 밀접한 관계가 있으며, 광합성 속도는 다양한 환경 요인에 의해 변화한다. 광합성 속도는 작물의 생육 상태나 생육 속도를 판단하는 지표로 사용되며, 작물 재배 시설을 구축하는 데 고 려해야 하는 중요한 요인이다. 이 연구의 목적은 광도, CO2 농도 및 생육 단계에 의해 변화하는 로메인 상추 의 군락 광합성 속도 모델을 개발하는 것이다. 군락 광합성 속도는 정식 후 5, 10, 15, 20 일차에서 5단계의 CO2 농도(600-2,200μmol·mol-1)와 5단계의 광조건(60-340μmol·m-2·s-1)이 처리된 3개의 밀폐 아크릴 챔버(1.0 × 0.8 × 0.5m) 내에서 측정하였다. 먼저 세 가지 환경 요인을 사용하는 식들을 곱하여 만든 단순곱모델을 구성 하였다. 이와 동시에 생육 시기에 따라 변화하는 광화학 이용효율과 카르복실화 컨덕턴스, 호흡에 의한 이산화탄소 발생 속도를 포함하는 수정 직각쌍곡선 모델을 구성하여 단순곱 모델과 비교하였다. 검증 결과, 단순곱 모델의 R2는 0.923이었으며, 수정 직각쌍곡선 모델의 R2는 0.941을 나타내었다. 따라서 수정 직각쌍곡선 모델 이 광도, CO2 농도, 생육 단계의 3 변수에 따른 군락 광합성 속도를 표현하는 데 더욱 적합한 것으로 판단하 였다. 본 연구에서 개발된 군락 광합성 모델은 식물공장에서 상추 재배를 위해 생육 단계별로 설정해야 할 최 적의 광도와 CO2 농도를 결정하는데 도움이 될 것으로 생각된다.
        4,000원
        15.
        2018.04 구독 인증기관·개인회원 무료
        이 연구는 떡갈나무(Quercus dentata Thunb. ex Murray) 유식물을 대상으로 대기 중의 CO2농도와 기온이 상승하였을 때 광(L), 수분(M), 유기물(N) 그리고 토성(S)의 변화에 따라 생육이 어떻게 변하는지 알아본 것이다. 떡갈나무는 낙엽활엽교목으로 전국 표고 800m이하의 산기슭, 산중턱 뿐 아니라 해변가의 야산이나 섬에도 잘 생육하며, 건조한 석회암 지역에서 우점종으로 분포하고 있다. CO2농도와 기온을 상승시킨 온난화처리구와 대기 중의 상태를 그대로 둔 대조구에서 광, 수분, 유기물 그리고 토성을 각각 4구배 (1, 2, 3, 4)로 처리하였다. 각 구배 당 24개체씩 파종하여 2017년 3월부터 10월까지 8개월간 생육시킨 후 잎 수, 지하 부/지상부 길이 및 무게, 잎자루/잎몸/잎폭 길이 및 무게 그리고 비엽면적 등 20가지 형질을 측정하였다. 측정한 20가지 형질은 온난화, 광, 수분, 유기물 그리고 토성 환경에 의한 생육반응에서 통계적인 차이가 있었다. 특히 지하부의 반응은 수분이나 토성 보다 광 조건에서 차이가 컸고, 이에 따라 식물체 무게와 지하부/지상부 비에도 영향을 주었다. 또한 잎면적은 모든 구배에서 대조구보다 처리구에서 높아 지는 경향을 보였으며 특히 유기물을 처리하였을 때 대조 구와 처리구 간의 통계적인 차이가 있었다. 이는 유식물이 지구온난화가 진행됨에 따라 광합성을 증가시키기 위한 적응으로 해석된다. 이 연구는 2017년 중견연구지원사업 (NRF-2016R1A2B1010709)에 의하여 지원되었다.
        16.
        2018.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 고농도 CO2 환경에 순응한 호접란 유묘의 CO2 교환 및 생장 반응을 조사하기 위해 실시하였다. 환경 조절이 가능한 식물생장상에서 6주령 호접란 ‘만천홍’을 27주 동안 야간에 각각 400 ± 100, 900 ± 100, 1500 ± 100, 2100 ± 100μmol CO2·mol-1 농도로 유지해주었다. 처리에 앞서 발달해 있었던 최상위 성숙엽으로 측정한 야간 중 CO2 흡수량은 900μmol CO2·mol-1 처리구에서 가장 높았고, 이어 2100, 1500, 400μmol CO2·mol-1 순으로 높았다. 그러나 처리 7주 이후 새로 발달한 성숙엽에서 측정한 결과, 2100μmol CO2·mol-1 처리구가 야간 중 가장 높은 CO2 흡수량을 보였으며, CO2의 흡수량은 처리 CO2 농도가 높아질수록 증가하는 경향을 보였다. 생장 반응에서는 최상위 성숙엽의 엽장, 엽폭 및 생체량은 900, 1500, 2100μmol CO2·mol-1 등 고농도 처리구에서 감소하였으나, 신엽 발달은 고농도 CO2 처리 하에서 촉진되었다. 이러한 결과들은 호접란 유묘의 높은 CO2 환경에 대한 적응이 CO2 흡수와 신엽 발달을 증진시킬 수 있다는 것을 보여준다. 그러나 900μmol CO2·mol-1 이상의 고농도에서는 잎의 생장과 생체량이 다소 줄어드는 경향이 있어 이에 대한 원인구명 등 추가적인 연구가 필요하다.
        4,000원
        17.
        2017.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        천마(Gastrodia elata Blume)는 난초과 다년생 기생식물로 곰팡이균과 공생하는 독특한 생활방식을 가진다. 천마의 지하근은 고혈압, 뇌졸중, 백혈병, 두통 특히 신경쇠약치료 등에 쓰이는 약용식물이다. 본 연구는 지구온난화가 천마의 생태적 반응에 미치는 영향을 알아보기 위해 보통의 야외 대기환경과 같은 대조구, 대조구보다 온도를 약 2℃ 상승시킨 온도상승구, 온도와 함께 대조구보다 CO2 농도를 약 2배 증가시킨 CO2+온도상승구에서 참나무 원목, 뽕나무버섯균, 종마를 함께 파종하고, 재배하여 생식기관과 지하근의 생물량을 비교 관찰하였다. 그 결과, 꽃대 수는 온도상승구> 대조구> CO2+온도상승구 순으로 적었다. 꽃대 길이는 온도상승구> 대조구> CO2+온도상승구 순으로 짧았다. 화서 길이는 대조구> 온도상승구> CO2+온도상승구 순으로 짧았다. 생식기관의 무게는 온도상승구> 대조구> CO2+온도상 승구 순으로 가벼웠다. 지상부의 생물량은 온도상승구> 대조구> CO2+온도상승구 순으로 낮았다. 생산된 근경의 수는 온도상승구> 대조구> CO2+온도상승구 순으로 적었다. 근경의 생물량은 온도상승구> 대조구> CO2+온도상승구 순으 로 낮았다. 이러한 결과는 온도만 올라간 환경조건에서는 천마의 생육은 활발하여 생산량이 증가하지만, 지구온난화조 건인 온도와 CO2 농도가 동시에 상승하는 조건에서는 천마의 생육이 불량하게 됨을 의미하는 것이다. 따라서, 천마의 성마와 종마 생산량을 높이기 위해서는 재배지의 적정지온 20~25℃를 유지하고, 높은 CO2 농도에 노출되지 않도록 하여야 할 것이다.
        4,000원
        18.
        2017.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        CO2농도와 온도의 상승으로 인한 지구온난화가 진행되었을 때 광, 수분 그리고 유기물 구배에 따른 멸종위기식물인 황근의 생육과 생태적 지위폭의 변화를 알아보았다. 대조구(야외)와 처리구(CO2 + 온도 상승구)로 나누어 각각 광, 수분 그리고 유기물구배를 두어 재배하였다. 그 연구결과, 황근은 낮은 광량보다 높은 광량을 선호하나, 광량이 787±77.76μmol m-2s-1을 넘어가면 높은 광량이라 하더라도 생육이 어려웠다. 또한 유기물이 없거나(0%) 너무 많은 토양(20%)에서는 생육이 어려웠다. 그러나 수분 구배에 따른 경향이 보이지 않았다. 황근의 고사율은 대조구보다 처리구에서 광량이 높은 조건을 제외한 모든 구배에서 높았다. 이는 CO2와 온도가 상승하면 광에 대한 내성범위가 좁아진다는 것을 의미한다. 대조구와 처리구를 비교하였을 때, 수분구배에 따른 경향은 보이지 않았다. 유기물구배에서 는 대조구보다 처리구에서 모두 고사율이 낮았는데, 이는 유기물에 대한 내성의 범위가 넓어진 것을 의미한다. 황근의 생태적 지위폭은 처리구가 대조구보다 광 구배에서 30.1% 좁아졌으며, 수분 구배에서 8.6% 그리고 유기물 구배에서 30% 넓어졌다. 따라서 CO2농도와 온도의 증가로 인한 지구온난화가 진행되면, 황근의 생육은 광량에 의해서 제한될 것으로 판단된다.
        4,000원
        19.
        2017.04 구독 인증기관·개인회원 무료
        최근 인간의 무분별한 개발로 인해 CO₂농도와 온도가 상승되고 있으며, 이러한 기후변화는 생물들에게 영향을 미칠 것이다. 높아진 CO₂농도와 온도에 적응하는 생물은 계속해서 생존하겠지만 그렇지 못한 생물은 서서히 멸종이 될 것이다. 황근(Hibiscus hamabo)은 낙엽반관목으로서 환경부 지정 멸종위기야생생물 2급으로 지정되어있다. 겨울철의 내한성은 매우 약하여 중부 이북 지방에서 노지월동이 불가능하다. 제주도 5개 장소와 전남 완도에 분포했으나 완도 자생 개체는 모두 사라졌고 복원된 개체만 남아있다. 또한, 최근에는 해안도로 건설로 인하여 자생지 파괴에 직면해 있다. 멸종위기식물은 다른 식물들에 비해 생태적 지위폭이 좁기 때문에 환경변화에 더 취약하다. 따라서, 본 연구에서는 CO₂농도와 온도의 상승으로 인하여 기후변화가 진행되었을 때 광, 수분 그리고 유기물 구배에 따른 황근의 생태적 지위폭의 변화를 알아보고자하였다. 온실에서 대조구(야외)와 처리구(CO₂ 농도+ 온도 상승구)로 나누어 각각 광(L10, L30, L70, L100), 수분(M100, M300, M500, M700) 그리고 유기물(N0, N5, N10, N20)구배를 두어 재배를 한 후 영양생장기관인 지상부 길이와 잎 수를 측정하였다. 황근의 지상부 길이는 대조구에서 광량이 낮은 조건(L1)에서 약간 높은 조건(L3)까지 증가하다가 높은 조건(L4)에서 감소하는 경향이 있었으나 통계적인 차이는 없었다. 처리구에서는 광량이 낮은 조건(L1)과 약간 낮은 조건(L2)에서 고사하였으며, 약간 높은 조건(L3)보다 높은 조건(L4)에서 지상부 길이가 짧아지는 경향이 있었으나 통계적인 차이는 없었다. 대조구에서 지상부 길이는 수분함량이 낮은 조건(M1)에서 약간 낮은 조건(M2)까지 증가하다가 약간 높은 조건(M3)에서 다른 구배들 보다 더 많이 감소하고 높은 조건에서 다시 증가하는 경향을 보였으나 통계적인 차이는 없었다. 그리고 처리구에서는 수분함량에 따른 증감의 폭은 대조구에 비해 다소 작았지만 유사한 경향을 보였다. 대조구에서 황근은 유기물함량이 낮은 조건(N1)과 높은 조건(N4)에서 고사하였고, 약간 낮은 조건(N2)보다 약간 높은 조건(N3)에서 지상부의 길이가 약간 증가하였으나 통계적인 차이는 없었다. 처리구에서 지상부 길이는 유기물의 함량이 높아질수록 길었다. 수분함량이 낮은 조건(M1)과 높은 조건(M4)내에서 대조구 황근의 지상부 길이는 처리구보다 길었다. 광량이 낮은 조건(L1)과 약간 낮은 조건(L2)에서 처리구의 황근은 대조구와 다르게 모두 고사하였다. 수분함량이 낮은 조건(M1)과 높은 조건(M4)내에서 대조구 황근의 지상부 길이는 처리구보다 길었다. 그리고, 유기물함량이 낮은 조건(N1)과 높은 조건(N4)내에서 대조구의 황근은 처리구와 다르게 모두 고사하였다. 황근의 잎 수는 대조구에서 광량이 낮은 조건(L1)에서 약간 낮은 조건(L2)까지 증가하다가 약간 높은 조건(L3)부터는 적어지는 경향을 보였으나 통계적 차이는 없었다. 처리구에서 황근은 광량이 낮은 조건(L1)과 약간 낮은 조건(L2)에서 고사하였으며, 약간 높은 조건(L3)은 높은 조건(L4)간에는 차이가 없었다. 대조구에서 잎 수는 수분함량이 낮은 조건(M1)에서 약간 낮은 조건(M2)까지는 증가하다가 약간 높은 조건(M3)에서 급격히 감소하였다가 높은 조건(M4)에서 증가하였다. 처리구에서 잎 수는 수분함량이 낮은 조건(M1)에서 약간 낮은 조건(M2)까지는 증가하다가 약간 높은 조건(M3)부터 감소하였으나 통계적인 차이는 없었다. 대조구에서 황근은 유기물의 함량이 낮은 조건(N1)과 높은 조건(N4)에서 고사하였고, 약간 낮은 조건(N2)에서 약간 높은 조건(N3)으로 갈수록 잎 수는 감소하는 경향은 있었으나 통계적인 차이는 없었다. 처리구에서 잎 수는 유기물 함량이 약간 높은 조건(N3)까지 증가하다가 높은 조건(N4)에는 감소하는 경향을 보였으나 통계적인 차이는 없었다. 황근의 생태적 지위폭은 대조구에서 광(0.913)>수분(0.786)>유기물(0.479), 처리구에서 수분(0.935)>유기물(0.870)>광(0.482) 순으로 나타났다. 처리구내에서 황근의 생태적 지위폭은 광 구배에서 30.1% 좁아졌으며, 수분 구배에서 8.6% 그리고 유기물 구배에서 30% 넓어졌다. 따라서 기후변화가 진행되면 황근의 분포는 광량에 의해서 제한될 것이다.
        20.
        2016.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 멸종위기식물인 섬시호를 대상으로 기후변화의 원인인 CO2+온도상승과 식물의 생육 및 분포에 중요한 광, 수분, 영양소를 조합 처리하여 지구온난화에 대해 어떻게 반응하는지 알아보고, 기후변화환경 하에서의 보전방안을 마련하고자 하였다. 실험은 야외의 CO2 농도와 온도를 반영한 대조구와 유리온실에서 대조구보다 CO2 농도가 약 2배, 온도가 약 2°C 높게 유지한 CO2+온도상승구로 구분하여 2010년부터 2011년까지 생육시켜 관찰하고 비교하였다. 섬시호의 생육반응은 광, 수분, 영양소보다 CO2+온도상승의 영향을 더 많이 받았고, CO2+온도상승구에서 영양소가 많은 조건일 때 잘 자랐다. 잎 수는 대조구에 비해 CO2+온도상승구에서 광이 낮은 구배와 영양소가 높은 구배에서 많았고, 잎 폭은 대조구에 비해 CO2+온도상승구에서 광과 영양소가 중간 구배에서 좁았다. 그러나 지상부 길이, 잎몸 길이 그리고 잎자루 길이는 대조구와 CO2+온도상승구 간에 차이가 없었다. 본 연구결과를 토대로 미래기후환경 하에서 섬시호의 보전을 위해서는 섬시호 자생지에 NH4 +, NO3, P2O5, K2O 등이 포함된 영양소를 공급하고, 섬시호 자생지가 파괴되지 않도록 하여야 한다. 또한 섬시호의 자생지와 유사한 환경조건을 가진 곳을 발굴하여 복원함으로써 서식지를 확대하여야 한다.
        4,000원
        1 2 3