To analyse the relationship between above-ground carbon stocks, species diversity and broadleaved forests structural diversity of South Korean forests, we collected vegetation inventories from environmental impact assessment projects over the past 10 years. The available data were selected and organised including tree species, DBH and area each projects. The data was classified by forest type, aboveground carbon stocks were calculated and compared, and the correlation between aboveground carbon stocks and biodiversity and structural diversity was analysed. The results showed that above-ground carbon stocks were higher in mixed forests and broadleaved forests and lower in needleleaved forests, similar to previous studies. However aboveground carbon stocks of mixed forests were higher in natural forests than in plantations. Aboveground carbon stocks in broadleaved forests were higher in plantations than natural forests, and there was no statistical different of between natural and plantations in needleleaved forest. This could be the result of a variety influences including biological and environmental factors in the study area, and further research is needed to analyse the effects on carbon sequestration. Correlation analysis showed no correlation between biodiversity and above-ground carbon stocks, but a positive correlation between structural diversity and above-ground carbon stocks. This indicates that above-ground carbon stocks in forests are associated with unevenness diameters and the proportion and evenness of tree species by diameter. In addition, it has been analysed that the high succession stages in forest have higher species diversity and structural diversity, and greater efficiency in the utilization of resources required for plant growth, leading to increased plant productivity and storage. Considering that the study sites were young forests with an average DBH of 14.8~23.7 cm, it is expected that carbon stocks will increase as biodiversity and structural diversity increase. Further research is needed to develop techniques to quantitatively assess the relationship of diversity to carbon stocks for policy use in assessing and increasing carbon stocks in forests.
Background/Aim: In gallbladder cancer (GBC), gender differences in incidence and mortality rates have been reported with geographic variation. However, there is little known about sex-related difference in GBC prognosis. This study compares prognostic factors according to gender for GBC.
Methods: We searched clinicopathological factors in all stages of 952 GBC patients from seven medical centers in Korea. A total of 927 patients were enrolled and surgery with curative resection was performed in 499 patients.
Results: Carbohydrate antigen (≥37 U/mL) was a significant prognostic factor in both females and males (odd ratio [OR], 4.30; 95% confidence interval [CI], 3.13-5.89; p<0.001). Age was a significant factor only in female patients, elderly patients were associated with low resectability and the likelihood of T-stage >2; an independent predictor of poor prognosis via multivariate analysis (OR, 1.03; 95% CI, 1.01-1.05; p=0.005, OR, 1.05; 95% CI, 1.02-1.08; p=0.002). Body mass index (BMI) also showed gender difference, and lower BMI (≤25 kg/m2) was the significant good indicator of multivariate analysis for lymph node metastasis in female patients (OR, 0.42; 95% CI, 0.23-0.77; p=0.005) but, the significant poor indicator of univariate analysis for advanced T-stage in male (OR, 2.79; 95% CI, 1.40-5.54; p=0.003).
Conclusions: These results suggest that there is a possibility of gender difference in GBC prognosis. Age and high BMI were poor prognostic factors for curative resection for female GBC patients.
Initial and convalescent treatment of acute pancreatitis (AP) is important in order to improve the prognosis and prevent the recurrence in the patients with AP. Initial intensive treatment includes fluid therapy, pain control, antimicrobial therapy, endoscopic retrograde cholangiopancreatography (ERCP), and nutritional support. Goal-directed therapy is recommended for fluid therapy, and the routine use of prophylactic antibiotics is not recommended. In acute gallstone pancreatitis, urgent ERCP should be performed only in patients with cholangitis or persistent cholestasis. Early oral feeding is advisable as tolerated and enteral feeding via nasogastric or nasojejunal tube appear comparable. In convalescent treatment, cholecystectomy during the initial admission is advisable for mild biliary pancreatitis with gallstone as possible, and treatment against alcohol dependence is considerable for recurrent acute alcoholic pancreatitis. In this review, we recommend practice guidelines for initial treatment, nutritional support, and convalescent treatment.
To analyze the distribution characteristics of alien plants in various habitat types, 249 sites were selected from four administrative districts in the Gyeongsang region of Korea. The survey was conducted across nine different habitat types. A total of 115 species of alien plants were collected; comprising 23 families, 73 genera, 112 species, and 3 varieties. Species from the family Compositae were the most common at 33.0%. Raunkiaer’s life forms had the highest occurrence rate with 70 species (60.9%) of therophytes (Th) followed by 30 species (26.1%) of hemicryptophytes (H) and 8 species (7.0%) of geophytes (G). The distributions of alien plant species per habitat type were: 81 species on the roadside; 80 species on vacant lots and artificial habitats; 67 species in streams; 53 species in grasslands; 47 species in cultivated lands; and 39 species on the coast. Since 2017, the number of alien plants has increased in Gyeongju-si, Cheongdo-gun, and Pohang-si, and decreased in Ulsan Metropolitan-si. In each region, 614 taxa were observed. The invasive alien species, Sicyos angulatus, Hypocaeris radicata, and Solanum carolinense, were observed for the first time and are expected to further increase the disturbance of the ecosystem.
In order to understand the vegetative role of Glycine soja, we studied the basic physiological characteristics between Glycine soja and Glycine max. For this study, the light intensity (μmol m-2 s-1) on leaf surface, leaf temperature (℃), transpiration rate (mmol m-2 s-1), photosynthetic rate (μmol m-2 s-1), substomatal CO2 partial pressure (vpm) of Glycine soja and Glycine max were measured, and the quantum yield, photosynthesis rate per substomatal CO2 partial pressure were calculated. In the results of simple regression analysis, the increasing quantum yield decreases leaf temperature both of Glycine soja and Glycine max and the increasing leaf temperature decreases transpiration rate in case of Glycine soja. However, in case of Glycine max, the increasing leaf temperature decreases substomatal CO2 partial pressure, photosynthetic rate, and photosynthetic rate per substomatal CO2 partial pressure as well as transpiration rate. Also, increasing transpiration rate increases substomatal CO2 partial pressure while decreases photosynthetic rate per substomatal CO2 partial pressure. Thus, Glycine soja is relatively more easily adaptable to severe environments with low soil nutrients and high light levels. Compared to Glycine max susceptible to water loss due to a water-poor terrestrial habitat, the physiological traits of Glycine soja has a high average transpiration rate and are less susceptible to water loss will act as a factor that limits the habitat according to soil moisture.
The most important thing to successfully restore an oak forest is finding suitable climatic conditions and topographic factors for the oak species to be introduced. In this study, in order to find suitable environmental conditions for the five dominant oak trees on the Korean Peninsula, we carried out analysing the information on the location of forest vegetation on the Korean Peninsula. The range of annual mean temperature of the five oak trees was narrow in the order of Q. mongolica (7.7~14.3°C), Q. variabilis (9.2~13.8°C), Q. acutissima (10.5~14.3°C), Q. serrata (11.4~13.7°C), Q. aliena (11.0~12.9°C). The range of annual precipitation of oaks was narrow in order of Q. mongolica (1072.7~1780.9 mm), Q. variablis (1066.6~1554.9 mm), Q. acustissima (1036.5~1504.8 mm), Q. serrata (1062.6~1504.7 mm). The range of altitude was in order of Q. mongolica (147~1388 m), Q. serrata (93~950 m), Q. variabilis (90~913 m), Q. acustissima (60~516 m), Q. aliena (55~465 m). The range of slope was in the order of Q. mongolica (8~56°), Q. variabilis (5~52°), Q. serrata (11~45°), Q. aliena (15~38°), Q. acustissima (16~37°). These results are considered to be very useful in the case of ecological restoration using deciduous oak trees on the Korean Peninsula.
Smart farm is a high-tech type of plant factory that artificially makes environmental conditions suitable for the growth of plants and manages them to automatically produce the desired plants regardless of seasons or space. This study was conducted by identifying the effects of Hertz and Duty ratio on the photosynthetic rate of ginseng, a medicinal crop, to find the optimal conditions for photosynthetic responses in smart farms. The light sources consisted of a total of 10 chambers using LED system, with 4 R+B (red+blue) mixed lights and 6 R+B+W (red+blue+white) mixed lights. In addition, the Hertz of the R+B mixed light was treated at 20, 60, 180, 540, 1620 and 4860 hz respectively. The R+B+W mixed light was treated with 60, 180, 540, and 1620 hz. Afterwards, experiments were conducted with the duty ratio of 30, 50, and 70%. As a result, the photosynthetic rate of ginseng according to duty ratio and Hertz was the highest at 60 hz when duty ratio was set to 50%. On the other hand, that was the lowest when the duty ratio was 30% at the same 60 hz. In addition, the photosynthetic rates were highest in the R+B mixed light and R+B+W mixed light at 60 hz. Therefore, the condition with the highest photosynthetic rate of ginseng in smart farms is 60 hz when the duty ratio in R+B mixed light is 50%.
We investigated the growth response and population regeneration of four halophyte species: Suaeda japonica, Salicornia europaea, Suaeda maritima and Suaeda glauca, when climate change proceeds caused by increased CO2 concentration and temperature. The plants collected from habitat in 2018 were transplanted into Wagner pots, and cultivated for two years in greenhouse divided into a control (ambient condition) and a treatment (elevated CO2+elevated temperature). The shoot length of halophytes was measured in July of each year, and the population regeneration rate was measured in October 2019. The shoot lengths of S. japonica and S. glauca had no difference between control and treatment for two years. Those of S. europaea were longer in control than treatment for two years. Those of S. maritima had no difference between control and treatment in 2018 but were longer in control than treatment in 2019. In control, the shoot lengths of S. japonica, S. europaea and S. glauca had no difference between years while those of S. maritima were longer in 2018 than in 2019. In treatment, those of S. japonica, S. europaea and S. maritima were shorter in 2019 than 2018 but S. glauca had no difference between years. The regeneration rates of S. japonica, S. europaea and S. glauca were lower treatment than control, and there was no difference in the regeneration rate of S. maritima. In conclusion, if climate change progresses caused by the increase of CO2 concentration and temperature, the shoot lengths of S. japonica, S. europaea and S. maritima will be shortened, and the regeneration rate of population will be increased only in the S. maritima.
본 연구는 4가지 환경요인에 따른 떡갈나무 유식물의 생육 반응 분석과 생태적 지위폭을 측정하였다. 환경요인은 광, 수분, 토성 그리고 유기물 함량이고 각각 4구배로 처리하였다. 광량이 많을수록 잎 무게, 지상부 무게, 지하부 무게 그리고 식물체 무게가 증가하였다. 수분함량처리구와 토성처리구에서 생육 반응은 차이가 없었다. 유기물 함량이 많을수록 지상부 무게가 증가하였지만, 나머지 형질의 생육 반응의 차이는 없었다. 생태적 지위폭은 광요인에서 0.865, 수분요인에서 0.995, 토성요인에서 0.994 그리고 유기물 함량 요인에서 0.988이었다. 생태학적 지위폭은 수분함량 처리구에서 가장 넓었고 광처리구에서 가장 좁았다. 이는 떡갈나무의 생육 반응이 광량의 양이 많을수록 생육이 좋고, 광에 민감함을 의미한다. 따라서 생육 반응과 생태적 지위폭을 결정짓는 것은 광 요인이다.
This study was carried out to investigate the vegetation of wetland and terrestrial lands in Jangdo wetland conserved area in Korea and to analyze the characteristics of the vegetation changes in the recent years. From the plant community, there were evergreen broad-leaved forests of the Machilus thunbergii, Castanopsis cuspidata, and Machilus thunbergii-Castanopsis cuspidata communities. Moreover, there were deciduous broad-leaved forests of the Salix koreensis, Mallotus japonicus, Mallotus japonicus-Pueraria thunbergiana and Celtis sinensis communities. Additionally, there were shrub forests of the Rosa multiflora-Rubus hirsutus, grassland of Molinia japonica-Miscanthus sacchariflorus and Miscanthus sacchariflorus-Imperata cylindrica communities, and plantation forest of the Pseudosasa japonica community. The area of the wetland vegetation (15%) was much narrower than that of the terrestrial land vegetation (85%). Comparing these results with those of the past 10 years, the wetland plant communities decreased by one-third and the proportion of neutral or dry plant communities increased. In order to mitigate landization succession of the wetland and maintain native wetland vegetation in this area, the expansion of the Salix koreensis community must be controlled to a suitable scale. In addition, it is urgently required to remove the invasive non-wetland plants, such as Pseudosasa japonica and Pueraria thunbergiana.