검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 11

        1.
        2022.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        An extract of fresh guava leaves (Psidium guajava) was used as a green carbon precursor to fabricate blue fluorescent carbon quantum dots (GCQDs) by hydrothermal process. The GCQDs show bright blue fluorescence emission under UV light with an excitation wavelength of 350 nm and emission at 450 nm. The physical structure of GCQDs was characterized by Fourier-transform infrared spectroscopy (FT-IR), Raman spectroscopy, X-ray diffraction (XRD), High-resolution transmission electron microscope (HR-TEM) and atomic force microscopy (AFM). GCQDs 80 μg inhibited the growth of waterborne pathogens Escherichia coli and Salmonella typhi. We also investigated the catalytic activity of the GCQDs on the removal of two azo dyes, namely Congo red and bromophenol blue, with and without NaBH4. The GCQDs showed an excellent reduction of color intensity of both dyes without NaBH4 within 30 min of treatment.
        4,200원
        2.
        2021.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, we report a controlled one-pot green synthesis of multiwalled carbon nanotubes (MWCNTs) via pyrolysis of sustainable agriculture waste (chickpea peel) at 400 °C in aqueous medium. These MWCNTs demonstrated 7.0 nm diameter, 0.28 nm graphitic spacing with carbonyl, hydroxyl, and carboxylic acid functionality. The D band (presence of sp3 defects) and G band ( E2g mode of graphite) at 1350 cm−1 and 1580 cm−1 originated in Raman spectrum, respectively. The prepared MWCNTs showed blue fluorescence with 10% fluorescence quantum yield in aqueous medium. The MWCNTs showed triple exponential decay characteristics with an average fluorescence lifetime of 4.7 ns. The synthesized MWCNTs revealed a consistent fluorescence in the cytoplasm of 22RV1 human prostate carcinoma cell line without exerting any sign of cytotoxicity. The MWCNTs also exhibited remarkable cytocompatibility in human immortalized prostate epithelial RWPE1 cells.
        4,000원
        3.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Effective processing and use of coal slime is of great significance to protect the environment and save resources. Different coal slimes (untreated with 43 wt% ash content, crushed and flotation treated with 10 wt% ash content, and pre-carbonized) were activated with KOH to prepare porous activated carbon. The results show the activated carbon prepared from coal slime with 10 wt% ash had high specific surface area (3037 m2/ g) and pore volume (1.66 cm3/ g), which was ascribed to the suitable contents of minerals as template and oxygen-containing functional groups. Electrochemical measurements exhibited the best specific capacitance of 220 F/g at 0.1 A/g and the cycle stability of over 100% capacitance retention after 1000 cycles at 5 A/g in 6 M KOH solution. Due to the high specific surface area, superior electrochemical performance, and facile and low cost, developing highly porous activated carbon for supercapacitors is one alternative way for effective use of coal slime waste.
        4,000원
        4.
        2020.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Although flame synthesis promises economic benefit and rapid synthesis of carbon nanotube (CNT), the lack of control and understanding of the effects of flame parameters (e.g., temperature and precursor composition) impose some challenges in modelling and identifying CNT growth region for obtaining better throughput. The present study presents an investigation on the types of carbon precursor that affect CNT growth region on nickel catalyst particles in an ethylene inverse diffusion flame. An established CNT growth rate model that describes physical growth of CNT is utilised to predict CNT length and growth region using empirical inputs of flame temperature and species composition from the literature. Two variations of the model are employed to determine the dominant precursor for CNT growth which are the constant adsorption activation energy (CAAE) model and the varying adsorption activation energy (VAAE) model. The carbon precursors investigated include ethylene, acetylene, and carbon monoxide as base precursors and all possible combinations of the base precursors. In the CAAE model, the activation energy for adsorption of carbon precursor species on catalyst surface E a,1 is held constant whereas in the VAAE model, E a,1 is varied based on the investigated precursor. The sensitivity of the growth rate model is demonstrated by comparing the shifting of predicted growth regions between the CAAE model and the VAAE model where the CAAE model serves as a control case. Midpoint-based and threshold-based techniques are employed within each model to quantify the predicted CNT growth region. Growth region prediction based on the midpoint-VAAE approach demonstrates the importance of acetylene and carbon monoxide to some extent towards CNT growth. Ultimately, the threshold-VAAE model shows that the dominant precursor for CNT growth is the mixture of acetylene and carbon monoxide. A simplified reaction mechanism is proposed to describe the surface chemistry for precursor reactions with nickel catalyst where decomposition of the ethylene fuel source into acetylene and carbon monoxide is accounted for by chemisorption.
        4,200원
        5.
        2019.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Carbon fibers (CF) are predominantly being manufactured from polyacrylonitrile (PAN) based precursors which require solution spinning utilizing health hazardous organic solvent. This also adds to the cost of production due to the investment for the solvent recovery. Study of melt processable precursors has long been sought as a solution for health and environmental problems associated with the use of hazardous solvent. No use of solvent for spinning will also reduce the cost of manufacturing. Our coworker Deng et al. reported the possibility of using acrylonitrile-co-1-vinylimidazole (AN/VIM) copolymer as melt processable CF precursor. Here we report a successful preparation of carbon fiber from the co-polymer. We successfully demonstrated the preparation of thinner precursor fibers and carbon fibers through our optimization study of melt spinning, annealing, stabilization and carbonization.
        4,000원
        6.
        2016.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Isroaniso matrix precursor synthesized from commercially available petroleum pitch was stabilized in air. The influence of oxygen mass gain during stabilization on the yield of matrix precursor was studied. Additionally, the influence of pressure on the yield of the stabilized matrix precursor in a real system was studied. The fourier transform infrared spectrometry (FTIR), thermogravimetric analysis (TGA), yield, yield rate, and yield impact were used to check the effect of stabilization and pressure on the yield of the matrix precursor and the end properties of the composite thereafter. The results showed that the yield increased with stabilization duration up to 20 h whereas it decreased for stabilization duration beyond 20 h. Further results showed that the stabilized matrix precursor for a duration of 5 h could withstand almost two-fold greater hot-pressing pressure without resulting in exudation as compared to that of a 1 h stabilized matrix precursor. The enhanced hot-pressing pressure significantly improved the yield of the matrix precursor. As a consequence, the densification and mechanical properties were increased significantly. Further, the matrix precursor stabilized for a duration of 20 h or more failed to provide proper and uniform binding of the reinforcement.
        4,000원
        7.
        2013.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Coal tar is the primary feedstock of premium graphitizable carbon precursor. Coal tars are residues formed as byproducts of thermal treatments of coal. Coal tar pitches were prepared through two different heat treatment schedules and their properties were characterized. One was prepared with argon and oxidation treatment with oxygen; the other was prepared with oxygen treatment at low temperature and then argon treatment at high temperature; both used coal tar to prepare coal tar pitches. To modulate the properties, different heat treatment temperatures (300~400˚C) were used for the coal tar pitches. The prepared coal tar pitches were investigated to determine several properties, such as softening point, C/H ratio, coke yield, and aromaticity index. The coal tar pitches were subject to considerable changes in chemical composition that arose due to polymerization after heat treatment. Coal tar pitch showed considerable increases in softening point, C/H ratio, coke yields, and aromaticity index compared to those characteristics for coal tar. The contents of gamma resin, which consists of low molecular weight compounds in the pitches and is insoluble in toluene, showed that the degree of polymerization in the pitches was proportional to C/H ratio. Using an oxidizing atmosphere like air to prepare the pitches from coal tar was an effective way to increase the aromaticity index at relatively low temperature.
        4,000원
        8.
        2005.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, AR (aromatic resin) pitch was employed as the matrix-precursor for carbon/carbon composite because it exhibits much higher coke yield than coal tar pitch. As a result, a fabrication process of carbon/carbon composites can be shortened. It has been known that the pitches may cause swolling problem during the carbonization process. In order to restrain the swelling occurrence, a small quantity of carbon black was added to the AR pitch. Due to addition of carbon black the swelling was decreased largely and the perform can be infiltrated with the AR pitch. The densification efficiency of the performs was compared with various matrix-precursors. The coke yield of matrixprecursors, the morphology and the degree of graphitization of carbon matrix were analyzed.
        4,000원
        9.
        2005.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Aligned multi-wall carbon nanotubes (MWNTs) were synthesized through the catalytic decomposition of hydrocarbons in a quartz tube reactor. In this study, we investigated the influence of gas flow rate of feedstock on the structure and growth rate of vertically aligned carbon nanotubes produced by the floating catalyst method. As the flow rate of feedstock increased, the nanotube diameter became smaller and the length became longer. Although the growth rate also increased with the raise of flow rate, the optimum flow rate of feedstock existed for the crystallinity of carbon nanotubes.
        4,000원
        10.
        2000.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The present research was undertaken to evaluate the possibility of water purification filter with activated carbon fibers (ACFs) using a very low cost precursor consisting of phenolic resin coated on glass fibers. The simplified procedure involving coating, curing and activation and a very low cost glass fiber as a raw material were adopted in order to reduce manufacturing cost. The breakthrough curves of the manufactured ACFs and the commercial activated carbon (AC, Calgon F-200) were investigated in the initial concentration range from 19 to 49 ppm for benzene, toluene and ethylbenzene. From breakthrough profiles, the manufactured ACFs had significantly faster adsorption kinetics than the AC. Especially the benzene breakthrough curves, the manufactured ACF (13 g of ACF with 32% of carbon on the glass) was over the limited level (5 ppb) after flowing of 32 l at initial concentration of 15 ppm, while the commercial AC was shown about 3 ppm in initial adsorption.
        4,000원
        11.
        1997.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PFO(pyrolized fuel oil) and C10+ oil, which are the residual heavy oils form a NCC(naphtha cracking center), were heat-treated to produce the precursor-pitch for carbon materials. After PFO was initially distilled near 300℃ to separate the volatile matters recovering as high-quality fuel oil, the residuum of nonvolatile precursor-pitch was then thermally pyrolized in the temperature ranges from 350℃ to 450℃. Spinnable isotropic pitch with the softening point of 200℃ and the toluene insolubles of 36wt% was obtained at 365℃, and then was successfully spun through a spinneret(0.5mm diameter). After spinning, an isotropic carbon fiber of 25μm diameter was obtained via oxidation and craboniation procedures. Mesophase spherules began to be observed from the product pitch pyrolized at 400℃, and bulk mesophase with a flow texture was observed above 420℃. In the case of C10+ was the feed was polymerized in the presence H2SO4 at room temperature to increase the molecular weight and then heat-treated gradually up to 200~250℃. The products obtained with the softening point of 80~190℃ were carbonized at 500 and 1000℃ to examine the morphology.
        4,200원