PURPOSES : This paper presents the experimental results of tests conducted on concrete produced with air-cooled (AS) and water-cooled (WS) ground blast-furnace slag exposed to multi-deterioration environments of carbonation and scaling.
METHODS : Carbonated and uncarbonated concrete specimens were regularly monitored according to the ASTM C 672 standard to evaluate the durability of concrete exposed to both scaling and combined carbonation and scaling conditions. Additionally, mechanical properties, such as compressive strength, flexural strength, and surface electric resistivity, were analyzed. RESULTS : It was found that concrete specimens produced with AS and WS had a beneficial effect on the mechanical properties because of the latent hydraulic properties of the AS and WS mineral admixtures. Moreover, carbonated concrete showed good scaling resistance in comparison to uncarbonated concrete, particularly for concrete produced with AS and WS. CONCLUSIONS : The improved scaling resistance of carbonated concrete showed that AS is a suitable option for binders used in cement concrete pavements subjected to combined carbonation and scaling.
In this paper, Results of mock-up test for mitigating carbonation of high volume mineral admixture concrete by spreading waste cooking oil. Concrete incorporating 60% of BS and 30% of FA with the size of 900×600×200 are discussed. Denatured Silicate paint is also applied to compare the performance. Test results indicate that the application of ERCO and DSP enhance carbonation resistance.
In this study is investigated nano-modified sulfur concrete carbonation resistance. Weight fraction of nano-modified sulfur are 0%, 3%, and 5% by cement's weight. The experiment result showed that there seem to be similarity in compressive strength according to weight fraction. and, the increase in nano-modified sulfur content enhanced concrete's carbonation resistance.
This study is carbonation resistance of the natural durability enhancement materials that can reduce cracking of the concrete. The durability enhancement materials of natural were substituted 10%, 20%, 30% of cement, the results were confirmed excellent carbonation resistance as the more increasing the natural durability enhancement.
From the previous research, as a solution of carbonation of high-volume SCM concrete, outstanding performance of emulsified refined cooking oil with applying on the surface of the concrete was suggested. As a comparative study, the aim of this research is evaluating carbonation resistance and pore structure of high-volume SCM concrete depending on the painting substances of emulsified refined cooking oil and modified silicate base permeating paint, which is commercial product by mock-up test.
As the usage of supplementary additives such as blast furnace slag and fly ash for concrete was increased, the carbonation of concrete has been a problem. Hence, in this research, as a solution of carbonation of the high-volume supplementary additive concrete, the effect of waste oil based liniment on carbonation and chloride resistivity was analyzed when it applied on the surface of the concrete.
중성화와 염해의 복합 열화 환경하의 콘크리트 내에서의 Cr강방식철근의 방식성을 평가하기 위하여 Cr함유율이 다른 10종류의 철근을 피복 두께 20mm 위치에 매입한 염화물 이온 함유량 0.3, 0.6, 1.2, 2.4kg/m3의 콘크리트 공시체를 제작하였다. 그 후 촉진 중성화 시험 및 고저온 건습 반복의 부식 촉진 시험 기간 중의 Cr강방식철근의 자연전위, 부식면적률, 부식감량률의 경시변화를 측정함으로써 각 부식 환경에 대한 Cr강방식철근의 방식성에 대하여 검토하였다. 그 결과, 중성화와 염해의 복합 열화 환경의 경우, 염화물 이온 함유량 1.2kg/m3과 2.4kg/m3에 대하여 각각 Cr함유율 7% 이상과 9% 이상의 Cr강방식철근에서 방식성이 확인되었다.