검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 17

        1.
        2023.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this paper, a dynamic centrifuge model test was conducted on a 24.8-meter-deep excavation consisting of a 20 m sand layer and 4.8 m bedrock, classified as S3 by Korean seismic design code KDS 17 10 00. A braced excavation wall supports the hole. From the results, the mechanism of seismically induced earth pressure was investigated, and their distribution and loading points were analyzed. During earthquake loadings, active seismic earth pressure decreases from the at-rest earth pressure since the backfill laterally expands at the movement of the wall toward the active direction. Yet, the passive seismic earth pressure increases from the at-rest earth pressure since the backfill pushes to the wall and laterally compresses at it, moving toward a passive direction and returning to the initial position. The seismic earth pressure distribution shows a half-diamond distribution in the dense sand and a uniform distribution in loose sand. The loading point of dynamic thrust corresponding with seismic earth pressure is at the center of the soil backfill. The dynamic thrust increased differently depending on the backfill's relative density and input motion type. Still, in general, the dynamic thrust increased rapidly when the maximum horizontal displacement of the wall exceeded 0.05 H%.
        4,000원
        2.
        2022.10 구독 인증기관·개인회원 무료
        Filtering nuclides in high-level nuclear waste using rotating plasmas is a physical separation method based on mass difference. Since it is not chemical separation or metallurgical separation, the elements are separated regardless of their chemical composition. Accordingly, the more the number of chemical elements present in the waste or the more difficult when using the differences in solubility, the more advantageous. However, to be economically competitive, new concepts for rotating plasmas are needed to improve the poor separation rates despite high energy and installation costs. In this work, we revisited a counter rotating plasma centrifuge to examine its potential as an effective device for separating nuclear waste efficiently and economically.
        3.
        2022.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, centrifuge model tests were performed to evaluate the seismic response of multi-DOF structures with shallow foundations. Also, elastic time history analysis on the fixed-base model was performed and compared with the experimental results. As a result of the centrifuge model test, earthquake amplification at the fundamental vibration frequency of the soil (= 2.44 Hz) affected the third vibration mode frequency (= 2.50 Hz) of the long-period structure and the first vibration mode (= 2.27 Hz) of the short-period structure. The shallow foundation lengthened the periods of the structures by 14-20% compared to the fixed base condition. The response spectrum of acceleration measured at the shallow foundation was smaller than that of free-field motion due to the foundation damping effect. The ultimate moment capacity of the soil-foundation system limited the dynamic responses of the multi-DOF structures. Therefore, the considerations on period lengthening, foundation damping, and ultimate moment capacity of the soil-foundation system might improve the seismic design of the multi-DOF building structures.
        4,000원
        5.
        2016.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Soil-foundation-structure interaction (SFSI) is one of the important issues in the seismic design for evaluating the exact behavior of the system. A seismic design of a structure can be more precise and economical, provided that the effect of SFSI is properly taken into account. In this study, a series of the dynamic centrifuge tests were performed to compare the seismic response of the single degree of freedom(SDOF) structure on the various types of the foundation. The shallow and pile foundations were made up of diverse mass and different conjunctive condition, respectively. The test specimen consisted of dry sand deposit, foundation, and SDOF structure in a centrifuge box. Several types of earthquake motions were sequentially applied to the test specimen from weak to strong intensity of them, which is known as a stage test. Results from the centrifuge tests showed that the seismic responses of the SDOF structure on the shallow foundation and disconnected pile foundation decreased by the foundation rocking. On the other hand, those on the connected pile foundation gradually increased with intensity of input motion. The allowable displacement of the foundation under the strong earthquake, the shallow and the disconnected pile foundation, have an advantage in dissipating the earthquake energy for the seismic design.
        4,000원
        6.
        2016.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        To investigate earthquake responses of structures with basements affected by soil deposits, centrifuge tests were performed using an in-flight earthquake simulator. The test specimen was composed of a single-degree-of-freedom structure model, a basement and sub-soil deposits in a centrifuge container. The test parameters were the dynamic period of the structure model, boundary conditions of the basement, existence of soil deposits, centrifugal acceleration level, and type and level of input earthquake accelerations. When soil deposits did not exist, the earthquake responses of the structures with fixed basement were significantly greater than those of the structure without basement. Also, the earthquake responses of the structures with the fixed basement surrounded by soil deposits were amplified, but the amplifications were smaller than those of the structures without basement. The earthquake responses of the structures with the half-embedded basement in the soil deposits were greater than those estimated by the fixed base model using the measured free-field ground motion. The test showed that the basement and the soil deposit should be simultaneously considered in the numerical analysis model, and the stiffness of the half-embedded was not effective.
        4,300원
        7.
        2016.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Damages of large embankment dams by recent strong earthquakes in the world highlight the importance of seismic security of dams. Some of recent dam construction projects for water storage and hydropower are located in highly seismic zone, hence the seismic performance evaluation is an important issue. While state-of-the-art numerical analysis technology is generally utilized in practice for seismic performance evaluation of large dams, physical modeling is also carried out where new construction technology is involved or numerical analysis technology cannot simulate the behavior appropriately. Geotechnical centrifuge modeling is widely adopted in earthquake engineering to simulate the seismic behavior of large earth structures, but sometimes it can’t be applied for large embankment dams due to various limitations. This study proposes a dynamic centrifuge testing method for large embankment dams and evaluated its applicability. Scaling relations for a case which model scale and g-level are different could be derived considering the stress conditions and predominant period of the structure, which is equivalent to previously suggested scaling relations. The scaling principles and testing method could be verified by modified modeling of models using a model at different acceleration levels. Finally, its applicability was examined by centrifuge tests for an embankment dam in Korea.
        4,000원
        8.
        2013.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In order to verify the reliability of numerical site response analysis program, both soil free-field and base rock input motions should be provided. Beside the field earthquake motion records, the most effective testing method for obtaining the above motions is the dynamic geotechnical centrifuge test. However, need is to verify if the motion recorded at the base of the soil model container in the centrifuge facility is the true base rock input motion or not. In this paper, the appropriate input motion measurement method for the verification of seismic response analysis is examined by dynamic geotechnical centrifuge test and using three-dimensional finite difference analysis results. From the results, it appears that the ESB (equivalent shear beam) model container distorts downward the propagating wave with larger magnitude of centrifugal acceleration and base rock input motion. Thus, the distortion makes the measurement of the base rock outcrop motion difficult which is essential for extracting the base rock incident motion. However, the base rock outcrop motion generated by using deconvolution method is free from the distortion effect of centrifugal acceleration.
        4,000원
        9.
        2012.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 원심 모형 시험을 위한 동적 현장 지반의 모사 기법을 제안하였다. 현장지반 모사를 위해서 현장 지반의 층상구조 및 전단파 속도 주상도에 대한 자료를 바탕으로 모형시료를 조성하고, 구속압 별 공진주 시험을 수행하였다. 그리고 공진주 시험을통하여 지반의 특성계수와 구속압 영향계수를 구하고, 모형 지반의 전단파 속도를 예측하였다. 이를 현장의 전단파 속도 주상도와 비교하여 시료 조건을 결정하였다. 그리고 결정된 시료 조건을 바탕으로 원심모형시험 모델을 제작하고, 인-플라이트 상태에서 벤더 엘리먼트시험을 수행하여 제안된 기법의 타당성을 검증하였다. 그리고 대형지진시험이 수행된 적이 있는 대만 화련의 현장 지반을 대상으로 축소모델링 기법을 적용하였다.
        4,000원
        11.
        2017.03 KCI 등재 서비스 종료(열람 제한)
        Domestic urban railway underground station structures, which were built in the 1970s ad 1980s, had been constructed as Cut-and-Cover construction system without seismic design. Because the trends of earthquake occurrence is constantly increasing all over the world as well as the Korean Peninsula, massive human casualties and severe properties and structures damage might be occurred in an non-retrofitted underground station during an earthquake above a certain scale. Therefore, to evaluate the retrofit effect and soil-structure interaction of seismic retrofitted underground station, a centrifugal shaking table test with enhanced stiffness on its structural main member are carried out on 1/60 scaled model using the Kobe and Northridge earthquakes. The seismic retrofitted members, which are columns, side walls, and slabs, are evaluated to comparing with existing non-retrofitted centrifuge test results Also, to simulate the scaled ground using variation of shear velocity according to site conditions such as ground depth and density, resonant column test is performed. From the test results, the relative displacement behavior between ground and structures shows comparatively similar in ground, but is increased on ground surface. The seismic retrofit effects were measured using relative displacements and moment behavior of column and side walls rather than slabs. Additionally, earthquake wave can be used to main design factor due to large structural deformation on Kobe earthquake wave than Norhridge earthquake wave.
        12.
        2016.04 서비스 종료(열람 제한)
        Waterside structures such as dams or levees are essential for flood protection, and flood induced failures of such structures can cause serious damages. Real-time safety prediction can prevent most of the damages to inland or the consequential economic damages induced by flood hazards. This study introduces a method of real-time safety prediction by evaluating the correlation between numerical simulation, real-time measurement, and geo-centrifuge data.
        13.
        2013.10 서비스 종료(열람 제한)
        To investigate earthquake responses of structures with basements and soil deposits, centrifuge tests using an in-flight earthquake simulator were performed. The fixed and embedded basements did not reduce the earthquake responses of SDOF structures due to the dynamic behaviors of massive soil deposits.
        14.
        2013.04 서비스 종료(열람 제한)
        In order to evaluate earthquake response of structures affected by shallow soft soil deposits, centrifuge tests were performed. The test specimen was composed of a single-degree-of-freedom structure model, a shallow foundation and sub-soil deposits in a centrifuge container. The structure response directly measured from the test showed that a large rocking rotation occurred due to the soil-foundation interaction. Thus, the acceleration of the structure was significantly smaller than the fixed base structure response.
        15.
        2012.11 서비스 종료(열람 제한)
        This study seeks to characterize the dynamic behaviour of each section and to understand the performance of the interface using centrifuge model test and numerical analyses. The model test was verified by the comparison of the test results with those of numerical analyses, and the natural frequency for the composite dam with concrete-rockfill was proposed as like the same centrifuge model test and numerical analyses.
        16.
        2012.02 서비스 종료(열람 제한)
        본 연구에서는 연약지반에서의 경량콘크리트포장을 적용할때의 안전성 평가를 위해 실제 포장체 사이즈의 1/30으로 축소한 모형을 이용하여 시험을 실시하였다. 연구에서 경량콘크리트 물성을 상사비를 통하여 알류미늄 슬래프 형태로 적용하였으며 슬래브를 지지하는 말뚝 또한 일반 지름 30cm 콘크리트 말뚝을 상사비를 적용하여 알류미늄으로 적용하였다. 연약지반은 카올리나이트를 물과 혼합하여 조성하였으며 연약지반층 하부에는 모래지반을 조성하였다. 시험은 지반조성 후에 포장체를 지반에 관입하고 원심모형실험을 통해 1시간 가량 조성지반에 안정화를 시킨 후 횡방향으로 하중을 가하여 경량콘크리트포장 모형의 안정성를 평가하였다. 시험결과 1G level에서 실험이 끝나는 순간까지 모형의 평균 침하량은 약 4mm의 침하량을 보였으며 30G level에서 안정화하는 1시간동안 1mm의 침하량을 보였다. 또한 횡방향 하중재하시 유한요소 해석을 통한 말뚝이 저항할 수 있는 횡하중 7kg에서 횡방향 변위가 일어나지 않았다.
        17.
        2011.05 KCI 등재 서비스 종료(열람 제한)
        지하역사의 대부분은 지진에 대비한 내진설계가 거의 수행되지 않음으로 인하여 일정규모 이상의 지진이 발생할 경우 대규모 인명 및 재산피해가 우려된다. 지중구조물인 지하역사의 신뢰도 높은 내진성능 평가를 위하여 지진하중 재하 시 지반과 구조물의 상호작용이 고려된 거동의 고찰과 검증이 요구된다. 이에 본 연구에서는 수도권 소재의 실제 지하역사에 대하여, 상사비 1/60 스케일의 축소모형 지하역사 구조물 시험체에 장주기인 Kobe지진파와 단주기인 Northridge지진파를 적용한 원심모형 진동대 시험을 수행하였다, 원심모형시험결과와 응답변위법, 동일단면에 대해 SHAKE91에 의한 지반 및 구조물의 상대변위, 구조물의 모멘트에 대하여 비교․분석함으로써 지하역사의 내진성능을 평가하고자 하였다.