본 논문은 가장 극한 조건(공정모델-2)에서 화학 제염한 경우 원자로 냉각재 펌프용 스테인리스강의 내식성 평가에 관하여 연구하였다. 사이클 경과에 따른 304 스테인리스강의 전기화학적 특성은 다른 스테인리스 강보다 우수한 특성을 나타냈다. 또한 공정모델-1과 공정모델-2의 304 스테인리스강은 가장 낮은 무게 감량을 나타냈다. 공정모델 용액에서 304 스테인리스강, 415 스테인리스강, 431 스테인리스강에 대한 실험 결과 공정모델-1에 대한 공정모델-2의 무게감량비는 각각 2.908, 2.372,그리고 2.370배를 나타냈다. 그 이유는 공정모델-2의 경우가 공정모델-1에 비하여 화학약품 농도나 온도가 높은 가혹한 조건에 기인한 것으로 사료된다.
It is crucial to be sure about the safety of nuclear facilities for human resources who are in danger of radioactive emission, also diminishing the volume of the wastes that are buried under the ground. Chemical decontamination of nuclear facilities can provide these demands at the same time by dissolving the oxide layer, which radionuclides such as 60Co and 58Co have been penetrated, of parts that are utilized in nuclear plants. Although there are many commercial methods to approaching its aim and they perform a high decontamination factor, they have some issues such as applying organic acids which have the ability to chelate with radionuclides that can be washed by underground water, have large quantities of radioactive waste and damage to the surface by severe intergranular attack. A new method has been introduced by KAERI’s scientist which is named the HyBRID Process, in this process the main solution is the acidic form of Hydrazine. In this process, like other acid-washing processes, there is a chance of corrosion on the metal surface which is not desired. The metal surface is able to be protected during dissolving process by adding some organic and inorganic corrosion inhibitors such as PP2 and PP3. There is a very new research topic about ionic liquids (ILs) as corrosion inhibitors which illustrates a vast potential for this application due to their tunable nature and the variety of options for cationic and anionic parts. The key factors for ILs corrosion inhibitors such as the hardness properties are summarized. In this study, we review to the fundamentals and development of corrosion inhibitors for chemical decontamination and give an prospect with emphasis on the challenges to be overcome.
The radiation field generated in the primary cooling system of a nuclear power plant tends to increase in intensity as radionuclides bind to the oxide film on the internal surface of the primary system, which is operated at high temperature and pressure, and as the number of years of operation increases. Therefore, decontamination of the primary cooling system to reduce worker exposure and prevent the spread of contamination during maintenance and decommissioning of nuclear power plants uses the principle of simultaneous elution of radionuclides when the corrosion oxide film dissolves. In general, a multi-stage chemical decontamination process is applied, taking into account the spinel structure of the corrosion oxide film formed on the surface of the primary cooling system, i.e. an oxidative decontamination step is applied first, followed by a reductive decontamination step, which is repeated several times to reach the desired decontamination goal. Currently, permanganic acid is commonly used in oxidative decontamination processes to remove Cr from corrosion oxide films. In the reductive decontamination step to remove iron and nickel, organic acids such as oxalic acid are commonly used. However, organic acids are not suitable for the final radioactive waste form. A number of multi-stage chemical decontamination technologies for primary cooling systems have been developed and commercialized, including NP-CITROX, AP/NP-CANDECON, CANDERM, AP/NP-LOMI and HP/CORD-UV. Among these, HP/CORDUV is currently the most actively applied primary cooling system chemical desalination process in the world. In this study, KAERI has developed a new chemical decontamination technology that does not contain organic chemical decontamination agents, with a focus on securing an original technology for reducing the amount of decontamination waste while having equivalent or better decontamination performance than overseas commercial technologies, and compared it with the inorganic chemical agent-based HyBRID (Hydrazine Based Reductive Metal Ion Decontamination) chemical decontamination technology.
In a nuclear power plant, the activated corrosion products are deposited on the reactor coolant system. The activated corrosion products must be removed to reduce the radiation exposure to workers before maintaining or decommissioning of the nuclear power plant. In order to remove the remove the activated duplex oxide layer generated on the reactor coolant system in the pressurized water reactor (PWR), the Cyclic SP (Sulfuric acid/Permanganate)-HyBRID (Hydrazine Based Reductive metal Ion Decontamination) process developed by KAERI (Korea Atomic Energy Research Institute) can be used. After applying the Cyclic SP-HyBRID process, a sulfate-rich waste powder containing the radionuclide is generated, and the radioactive powder has to be stabilized for final disposal. In the previous study, it was confirmed that the low-temperature sintering method can be applied to immobilize the sulfate-rich waste powder. Thus, immobilization of the Cyclic SP-HyBRID process waste powder was carried out by the low-temperature sintering method using a low melting point glass, and the physicochemical and radiological characteristics of a waste form were evaluated in this study. As a result, the compressive strength of the waste form increased with increasing sintering temperature and sintering time. It is considered that the result was caused by the difference in the band gap between the bismuth borate and zinc borate, which are the products during the sintering process. It was verified that the physical stability was maintained after the 107 Gy of irradiation test. In addition, it was confirmed that the radioactive metal hydroxides contained in the waste powder converted to metal oxide forms, which have the lower solubility, at the sintering temperature. Finally, the waste form was evaluated as a low-level radioactive waste from the concentration of radionuclides contained in the waste form.
Chemical equilibrium calculations for multicomponent aqueous systems involving the reductive dissolution of magnetite (Fe3O4) with oxalic acid (H2C2O4) were performed using the HSC Chemistry® version 9. They were conducted with an aqueous solution model based on the Pitzer’s approach of one molality aqueous solution. The change in the amounts and activity coefficients of species and ions involved in the reactions as well as the solution pH at equilibrium was calculated while changing the amounts of raw materials (Fe3O4 and H2C2O4) and the system temperature from 25°C to 125°C. In particular, the conditions under which Fe3O4 is completely dissolved at high temperatures were determined by varying the raw amount of H2C2O4 and the temperature for a given raw amount of Fe3O4 fed into the aqueous solution. When the raw amount of H2C2O4 added was small for a given raw amount of Fe3O4, no undissolved Fe3O4 was present in the solution and the pH of the solution increased significantly. The formation of ferrous oxalate complex (FeC2O4) was observed. The equilibrium amount of FeC2O4 decreased as the raw amount of H2C2O4 increased.
Chemical decontamination of primary systems in a nuclear power plant (NPP) prior to commencing the main decommissioning activities is required to reduce radiation exposure during its process. The entire process is repeated until the desired decontamination factor is obtained. To achieve improved decontamination factors over a shorter time with fewer cycles, the appropriate flow characteristics are required. In addition, to prepare an operating procedure that is adaptable to various conditions and situations, the transient analysis results would be required for operator action and system impact assessment. In this study, the flow characteristics in the steady-state and transient conditions for the chemical decontamination operations of the Kori-1 NPP were analyzed and compared via the MARS-KS code simulation. Loss of residual heat removal (RHR) and steam generator tube rupture (SGTR) simulations were conducted for the postulated abnormal events. Loss of RHR results showed the reactor coolant system (RCS) temperature increase, which can damage the reactor coolant pump (RCP)s by its cavitation. The SGTR results indicated a void formation in the RCS interior by the decrease in pressurizer (PZR) pressure, which can cause surface exposure and tripping of the RCPs unless proper actions are taken before the required pressure limit is achieved.