검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 9

        1.
        2022.10 구독 인증기관·개인회원 무료
        According to the Nuclear Safety and Security Commission (NSSC) Notice No. 2021-26 “Delivery Regulations for the Low- and Intermediate Level Radioactive Waste (LILW)”, the activity of 3H, 14C, 55Fe, 58Co, 60Co, 59Ni, 63Ni, 90Sr, 94Nb, 99Tc, 129I, 137Cs, 144Ce, and gross alpha must be identified. Currently, the scaling factor of the dry active waste (DAW) for LILW is applied as an indirect evaluation method in Korea. The analyses are used the destructive methods and 55Fe, 60Co, 59Ni, 63Ni, 90Sr, 94Nb, 99Tc, and 137Cs, which are classified as nonvolatile nuclides, are separated through sequential separation and then measured by gamma detector, liquid scintillation counter (LSC), alpha/beta total counter (Gas Proportional Counter, GPC), and ICP-MS. We will introduce how to apply the existing nuclide separation method and improve the measurement method to supplement it.
        3.
        2018.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this paper, a new Co10Fe10Mn35Ni35Zn10 high entropy alloy (HEA) is identified as a strong candidate for the single face-centered cubic (FCC) structure screened using the upgraded TCFE2000 thermodynamic CALPHAD database. The Co10Fe10Mn35Ni35Zn10 HEA is fabricated using the mechanical (MA) procedure and pressure-less sintering method. The Co10Fe10Mn35Ni35Zn10 HEA, which consists of elements with a large difference in melting point and atomic size, is successfully fabricated using powder metallurgy techniques. The MA behavior, microstructure, and mechanical properties of the Co10Fe10Mn35Ni35Zn10 HEA are systematically studied to understand the MA behavior and develop advanced techniques for fabricating HEA products. After MA, a single FCC phase is found. After sintering at 900℃, the microstructure has an FCC single phase with an average grain size of 18 μm. Finally, the Co10Fe10Mn35Ni35Zn10 HEA has a compressive yield strength of 302 MPa.
        4,000원
        4.
        2014.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The effect of alpha phase on the fatigue properties of Fe-29%Ni-17%Co low thermal expansion alloy was investigated. Two kinds of alloys (Base alloy and Alpha alloy) were prepared by controlling the minimal alloy composition. Microstructure observation, tensile, high-cycle fatigue, and low-cycle fatigue results were measured in this study. The Base alloy microstructure showed typical austenite γ phase. Alpha alloy represented the dispersed phase in the austenite γ matrix. As a result of tensile testing, Alpha alloy was found to have higher strengths (Y.S. & T.S.) and lower elongation compared to those of the Base alloy. High cycle fatigue results showed that Alpha alloy had a higher fatigue limit (360MPa) than that (330MPa) of the Base alloy. The Alpha alloy exhibited the superior high cycle fatigue property in all of the fatigue stress conditions. SEM fractography results showed that the alpha phase could act to effectively retard both fatigue crack initiation and crack propagation. In the case of low-cycle fatigue, the Base alloy had longer fatigue life in the high plastic strain amplitude region and the Alpha alloy showed better fatigue property only in the low plastic strain amplitude region. The fatigue deformation behavior of the Fe-29%Ni-17%Co alloy was also discussed as related with its microstructure.
        4,000원
        5.
        2006.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Co-Fe-Ni-B-Si-Cr based amorphous strips containing nitrogen were manufactured via melt spinning, and then devitrified by crystallization treatment at the various annealing temperatures of for up to 30 minutes in an inert gas atmosphere. The microstructures were examined by using XRD and TEM and the magnetic properties were measured by using VSM and B-H meter. Among the alloys, the amorphous ribbons of containing 121 ppm of nitrogen showed relatively high saturation magnetization. The alloy ribbons crystallized at showed that the grain size of alloy containing 121 ppm of nitrogen was about f nm, which exhibited paramagnetic behavior. The formation of nano-grain structure was attributed to the finely dispersed Fe4N particles and the solid-solutionized nitrogen atoms in the matrix. Accordingly, it can be concluded that the nano-grain structure of 5nm in size could reduce the core loss within the normally applied magnetic field of 300A/m at 10kHz.
        4,000원
        8.
        2004.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Dry sliding wear behavior of electro-pressure sintered Co-Fe and Co-Ni compacts was investigated. Pin-on-disk wear tests were performed on the sintered Co-Fe, Co-Ni disks against alumina balls at various loads ranging from 3N to 12N. A constant sliding speed of 0.1m/sec was employed. Wear rate was calculated by dividing the weight loss of a specimen by the measured specific gravity and sliding dis-tance. Worn surfaces and cross-sections of the specimens were examined using an SEM and EDS to investigate wear mechanism of the compacts. The wear behavior of the compacts were discussed as a function of their com-position. Effects of mechancial properties of the compact as well as oxide layers formed on wearing surface on the wear were also discussed
        4,200원
        9.
        1995.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The effects of Mn and Co additions up to 0.6 and 2.0 wt% respectively and the amount of cold-rolled reduction on the thermal expansion coefficient (TEC) of powder rolled Fe-Ni Invar strips were investigated. The compacted strips were sintered, homogenized and cold-rolled to the final thickness of 0.8 mm, 0.65 mm and 0.4 mm. All the strips reached full density except the case of 0.8 mm sample which has a very few porosities. The interstitials which are well known to increase TEC were minimized to the level of 10 rpm C,5 and N,0 by the processing. TEC was found to decrease by increasing the cold reduction. The Mn content had little effect on the TEC. But in Fe-Ni-Co system, TEC decreased with Co content up to 0.4 wt% and then increased, yielding the minimum value of at 0.4 wt% Co. This value is much lower than that of commercial Invar product. Such effect of Co is considered to be related with the maxiumum spontaneous- magnetostriction effect.
        4,000원