This study was conducted from 2022 to 2024 at the Grassland and Forage Crops Division, National Institute of Animal Science (RDA), in Cheonan, Korea, to develop a medium-maturing variety of Italian ryegrass (Lolium multiflorum Lam.). The newly developed tetraploid cultivar, named ‘Spider’, is characterized by its green leaves, semi-erect growth habit in late autumn, and erect growth habit in mid-spring. With a heading date of May 16, ‘Spider’ is classified as a medium-maturing variety. Compared to the control cultivar ‘Kowinmaster’, ‘Spider’ has a 1.0 mm wider leaf blade, a 1.6 cm longer leaf blade, and is 5 cm taller in plant height. Its dry matter yield (10,169 kg/ha) is significantly higher than that of ‘Kowinmaster’ (p<0.05). The crude protein content of ‘Spider’ is 10.4%, which is 0.2% higher than that of the control. Additionally, ‘Spider’ has a neutral detergent fiber (NDF) content of 49.5% and an acid detergent fiber (ADF) content of 26.6%, showing a 2.2% lower NDF and a 0.2% higher ADF compared to ‘Kowinearly’.
Though Farnesiferol C (FC) derived from Ferula asafoetida is known to have antiangiogenic and apoptotic effect in gastric, breast, nonsmall lung cancers, the underlying antitumor mechanism of FC is not fully understood so far. Hence, in the current study, apoptotic mechanism of FC was explored in colon cancers in association with carbon catabolite repression 4-negative on TATA-less 2 (CNOT2)/c-Myc signaling. Herein FC significantly increased cytotoxicity and reduced the number of colonies in HCT116 cells more effectively than in SW480 cells, though FC enhanced sub-G1 cell population in HCT116 and SW480 cells compared to untreated control. Consistently, FC activated the cleavages of Poly ADP-ribose polymerase (PARP) and Bax and attenuated the expression of pro-PARP and Cyclin D1 in HCT116 cells better than SW480 cells. Also, FC significantly reduced the expression of CNOT2 and c-Myc. Also, FC reduced of c-Myc stability in HCT116 cells by cycloheximide assay. Notably, CNOT2 depletion reduced the expression of c-Myc, while c-Myc depletion also attenuated the expression of CNOT2 in HCT116 cells, implying the crosstalk between CNOT2 and c-Myc. Furthermore, overexpression of c-Myc or CNOT2 promoted the expression of pro-PARP in HCT116 cells. Overall, these findings suggest that FC induces apoptosis via inhibition of CNOT2 and c-Myc in colon cancers for a potent anticancer candidate for further agriculture cultivation in Korea.
This study aimed to estimate the accumulated temperature requirements for phenological changes in Lilium. Eight cultivars of three lily types were cultivated in open field conditions for phenological observations based on floral organ development. Growing degree days (GDD) requirements for phenological changes were calculated and verified using Lilium LA hybrid ‘Serrada’ under greenhouse conditions. Lilium Oriental hybrids exhibited higher GDD requirements compared to Lilium FA and LA hybrids for their phenological development. Estimations of phenological change dates in greenhouse cultivation were accurate within 1–3 days. These results provide a reliable description for predicting lily development stages across diverse cultivation environments by quantifying the accumulated temperature requirements for key phenological events.
Galaxy evolution studies require the measurement of the physical properties of galaxies at different redshifts. In this work, we build supervised machine learning models to predict the redshift and physical properties (gas-phase metallicity, stellar mass, and star formation rate) of star-forming galaxies from the broad-band and medium-band photometry covering optical to near-infrared wavelengths, and present an evaluation of the model performance. Using 55 magnitudes and colors as input features, the optimized model can predict the galaxy redshift with an accuracy of σ(Δz/1+z) = 0.008 for a redshift range of z < 0.4. The gas-phase metallicity [12 + log(O/H)], stellar mass [log(Mstar)], and star formation rate [log(SFR)] can be predicted with the accuracies of σNMAD = 0.081, 0.068, and 0.19 dex, respectively. When magnitude errors are included, the scatter in the predicted values increases, and the range of predicted values decreases, leading to biased predictions. Near-infrared magnitudes and colors (H, K, and H −K), along with optical colors in the blue wavelengths (m425–m450), are found to play important roles in the parameter prediction. Additionally, the number of input features is critical for ensuring good performance of the machine learning model. These results align with the underlying scaling relations between physical parameters for star-forming galaxies, demonstrating the potential of using medium-band surveys to study galaxy scaling relations with large sample of galaxies.
본 연구는 절화 국화의 수경재배와 토경관비재배 시 생육 특 성을 비교하기 위하여 실시하였다. 그 결과 초장, 절화의 생체중 과 건물중은 토경관비재배에서 증가하였다. 식물체 내 전질소, 칼륨 및 칼슘의 함량도 토경관비재배에서 더 높았다. 반면에 줄기 직경은 수경재배에서 3.7mm로 증가하였다. 또한 개화소 요일수도 토경관비재배보다 수경재배에서 3일 정도 단축되었 고, 줄기 1개당 꽃 수도 19.6개로 수경재배에서 더 많았다. 결과 적으로 토경관비재배에서 식물체 내 무기염류 함량이 높고, 초장이 길어지고 생체중, 건물중이 증가하였지만 수경재배보다 개화기는 지연되었다. 또한 토경관비재배보다 수경재배에서 줄 기 직경이나 꽃 수 등이 증가하였다. 따라서 재배자의 입장에서 국화 수경재배를 통해 양분과 수분 공급량의 조절에 의한 개화 기의 조절, 조기 개화 및 절화 품질 향상 등의 효과를 기대할 수 있을 것으로 판단된다.
Following the previous study, which investigated the pharmacological properties of the Technekitty injection (Tc-99m), the toxicity of a single intravenous administration of the Technekitty injection (Tc-99m) and the side effects that may occur at the diagnostic dose were confirmed. The Technekitty injection (Tc-99m) was administered intravenously once at a dose of 0, 0.67, 2.0, and 6.0 mCi/kg to 5 male and female rats per group. Mortality, general symptom observation, and weight measurement were performed for 2 weeks, followed by observation of autopsy findings. There were no deaths, and no statistically significant weight change was observed. No abnormal systemic signs related to the Technekitty injection (Tc-99m) were observed. These results confirmed that Technekitty injection (Tc-99m) can be safely administered intravenously at doses up to 6.0 mCi/kg. Additionally, technetium-99m at an average dose of 2 mCi (74 MBq) has been verified as a diagnostic dose without adverse effects, allowing the Technekitty injection (Tc-99m) to be used safely without side effects at this dosage. This study demonstrates that the Technekitty injection (Tc-99m) has a wide safety margin, supporting its potential for clinical application. Moreover, these findings align with the nonclinical safety standards for radiopharmaceuticals, reinforcing its utility in veterinary medicine. The Technekitty injection (Tc-99m) is expected to be applicable for clinical diagnosis as a veterinary drug in Korea.