본 연구는 사회적 현안이 되는 미세먼지 저감 및 대기정화를 위해 석탄화력 발전산업에서 발생되는 부산물을 활용하여 미세먼지를 포집·분해하는 건설재료에 대한 기술 개발로서 자원재활용과 대기오염 저감 기술에 해당된다. 미세먼지를 석탄화력 발전소 애시 기반 다공성 활성탄의 표면에 흡착하고, 고기능성 광분해 나노섬유를 통해 분해하여 미세먼지 제거효율을 극대화 하고자 한다. 본 연구를 통해 개발되는 미세먼지 흡착·분해 다공체 기술은 방음벽, 보도블록 등 대기오염 농도가 높은 도로시설분야에 활용할 수 있을것으로 판단된다.
By the end of 2012, the recycled proportion of domestic waste tires was 287,330 ton (93.9%) of the amount of waste tires discharged (305,877 ton). The waste tires have been reused for heat supply, material recycling and other purposes; the proportions are 50.1%, 20.7% and 23.1%, respectively. In the case of heat supply, waste tires are supplied to cement kiln (104,105 ton, 68%), RDF manufacture facilities (47,530 ton, 31%) and incinerators (1,923 ton, 1%). Recently, there has been an increase in the use of waste tires at power generation facilities as an auxiliary fuel. Thus, physico-chemical analysis, such as proximate analysis, elemental analysis and calorific value analysis have been carried out to evaluate potential of waste tires as an auxiliary fuel in Korea. The LHV (Lower Heating Value) of waste tires is approximately 20% higher than that of coal, at an average of 8,489 kcal/kg (7,684 ~ 10,040 kcal/kg). Meanwhile, the sulfur content is approximately 1.5wt. %, and balance of plant (e.g. pipe line, boiler tube, etc.) may be corroded by the sulfur. However, this can be prevented by construction and supplementation with refractories. In this study, TDF (Tire Derived Fuel) produced from waste tires was co-combusted with coal, and applied to the CFB (Circulating Fluidized Bed) boiler, a commercial plant of 100 tons/day in Korea. It was combined with coal, ranging from 0 to 20wt. %. In order to determine the effect on human health and the environment, gas emission such as dioxin, NOx, SOx and so on, were continuously analyzed and monitored as well as the oxygen and carbon monoxide levels to check operational issues.
The aim of this work to investigate the distribution of mercury in the gas phase, bottom ash and fly ash during the combustion of coal and solid waste such as dried sludge and solid refuse fuel (SRF) because the solid waste can be used as alternative fuel. In our study, we used two types of continuous combustors including vertical and horizontal combustor at the same conditions. In vertical combustor, we can get only the bottom ash while in horizontal combustor we get both fly ash and bottom ash. For both combustors, the gaseous mercury was measured by using the Ontario Hydro Method. The results showed that a significant amount of emission of gas phase mercury occurs during the combustion of coal, dried sludge, and SRF. Among the fuels, SRF showed high mercury oxidation while dried sludge showed a high level of gaseous mercury emission in the flue gas.
There is an increasing demand for sustainable resources due to a steady increase in energy demand. As the1996 Protocol to the London Convention takes effect, conversion of sewage sludge to energy is increasing. To use waste as fuel, it is important to understand its combustion characteristics. Using thermogravimetric analysis, the combustion of coal, dried sewage sludge, and SRF was characterized in this study. Dried sludge and SRF showed similar combustion behavior at all temperature increase rates of 5, 10, 25, 40, and 100oC/min. Coal burned at a higher temperature as the temperature rate increased. This may be ascribed to the much higher volatile matter contents of dried sludge and SRF comparative to coal.
Bio-SRF (Bio-Solid Refuse Fuel) based on livestock waste has a low heating value and high moisture content. The concentration of toxic gas, such as SOx, NOx, and HCl, in the flue gas is changed according to the composition of fuel, which has been reported. Therefore, the study of fuel combustion characteristics is necessary. Additionally, the study of fuel firing characteristics is necessary. In this study, we investigated the combustion characteristics of the mixed firing of coal and Bio-SRF made from livestock waste in a circulating fluidized bed combustor (CFBC). The Bio-SRF of livestock waste was mixed with different ratios of coal based on the heating values when the coal was completely combusted in CFBC. In the results of the experiment, the combustor efficiencies of the calculated unburned carbon concentration in the fly ash were 98.87%, 99.04%, 99.64%, and 99.71% when the multi-firing ratio of livestock sludge increased from 100/0 to 70/30. In addition, the boiler efficiencies were 86.23%, 86.30, 87.24, and 87.27%. Through the experimental results, we identified that the mixed combustion of livestock sludge is not affected by boiler efficiency. We have systematically investigated and discussed the temperature changes of an internal combustor, compositions of flue gases, solid ash characteristics, and the combustion and boiler efficiency during the mixed firing of coal and Bio-SRF.
The world consumption of the coal has been increased very sharply during past few years result from oil exhaustion, fluctuation in the price of oil and low price competitiveness of alternative energy. The International Energy Agency (IEA) has estimated that coal will be available for over 110 years, with coal reserves of close to 860 billion tons. The pulverized coal is blended coal powder that the particle diameter under 10μm. It has advantage of combustion efficiency and flame stabilization. The use of coal blends is becoming increasingly common in pulverized-coal power plants because it improves the economic performance of these plants by diversifying the fuel range. However, although blending can improve combustion behaviors and decrease gaseous pollutant emissions, it has difficulty of design and operating the pulverized coal combustor because despite the small particle size, combustion process of pulverized coal is exceedingly complex. Because of that the detail study on the combustion characteristic is important for increasing of efficiency. As a base investigation for numerical calculation of pulverized coal combustion, this study verified validity of models and compare the numerical calculation results with the experimental results.
The following are the results from an evaluation of the combustion characteristics of biomass processed with lowtemperature carbonization and coal, and those of a blend of both. Differential thermo-gravimetric (DTG) analysis has revealed that the number of curves was reduced as a result of carbonization and that the fuel quality was improved due to the increase of initial temperature (IT). It was also confirmed that the carbonized samples consisting only of the biomass required less combustion time (tq), while samples blended with coal burned longer than the weighted average value. The combustion time of a blended sample was shorter at an carbonization temperature of 400oC than at 300oC, and the combustion stability was achieved due to a narrow range of change in the combustion characteristics. The reaction rate constant (k) of the samples blended with coal was found to be smaller for all blend ratios, when compared with that of the unblended samples (raw, carbonized biomass). The combustion reaction models that were applicable for the devolatilization-combustion zone were diffusion (D1, D3) and Reaction order (O3) models; diffusion (D1-D4) model was primarily employed in the char combustion zone. In summary, low-temperature carbonization contributed to minimizing the change in the combustion characteristics of the biomass/coal blend.
Efforts were made to determine the activation energy and the reaction order by adopting Kissinger and Flynn-Wall-Ozawa analysis methods. All the data were acquired from TGA thermograms for the mixed fuels with different temperature heating rates. It could be known that both the coal and the mixed fuels decomposed thermally at temperature ranges of 300~700℃. The temperature at the maximum reaction rate, Tp, could be determined by DTG method, which could be obtained by differentiation of TGA thermogram. Kissinger analysis showed the linear relationship with experimental data, showing the activation energy of 319.64 ±4 kJ/mol. From Flynn-Wall-Ozawa analysis, it was shown that the activation energies and the reaction orders did not undergo any significant changes with both the conversions and the heating rates. It was considered from this facts that the combustion mechanism of the mixed fuels could not be affected by the extent of conversion and heating rate. In the present study, the activation energies showed different values according to the different analysis methods. The difference might be originated from the inconsistency of the mathematical data treatment method. In other words, while the activation energies obtained from the Kissinger method indicated the average values for overall reaction, that from Flynn-Wall-Ozawa method showed the average values for the each conversion around Tp.
The coal gasification fuel is important to replace petroleum fuel. Also they have many benefits for reducing the air pollution. Measurements on the combustion characteristics of synthetic gas from coal gasification have been conducted as compared with LPG in constant volume combustion chamber. The fuel is low caloric synthetic gas containing carbon monoxide 30%, hydrogen 20%, carbon dioxide 5%, and nitrogen 45%. To elucidate the combustion characteristics of the coal gasification fuel, the combustion pressures, combustion durations, and pollutants(NOx, CO2, CO) are measured with equivalence ratios(ø), and initial pressures of fuel-air mixture in constant volume chamber. In the case of the coal gasification fuel, maximum combustion pressure and NOx concentration are lower rather than LPG fuel. However CO and CO2 emission concentration are similar to that of LPG fuel.
It has been studied that combustion and the production of air pollution of anthracite - bituminous coal blend in a fluidized bed coal combustor. The objects of this study were to investigate mixing characteristics of the particles as well as the combustibility of the low grade domestic anthracite coal and imported high calorific bituminous coal in the fluidized bed coal combustor. They were used as coal samples ; the domestic low grade anthracite coal with heating value of 2,010㎉/㎏ and the imported high grade bituminous coal with heating value of 6,520㎉/㎏. Also, the effects of air flow rate and anthracite fraction on the reaching time of steady state condition have been studied. The experimental results are presented as follows. The time of reaching to steady state was affected by the temperature variation. The steady state time was about 120 minute at 300scfh which was the fastest. It has been found that O_2 and CO_2 concentration were reached steady state at about 100 minute. It has been found that O_2 concentration decreased and CO_2 concentration increased as the height of fluidized bed increased. It was found that splash zone was mainly located from 25㎝ to 35㎝ above distributor. Also, as anthracite fraction increased, the mass of elutriation particles increased, and CO_2 concentration decreased. As air flow rate increased, O_2 concentration decreased and CO_2 concentration increased. Regardless of anthracite fraction and flow rate, the uncombustible weight percentage according to average diameter of elutriation particles were approximately high in the case of fine particles. As anthracite fraction and air flow rate increased, elutriation ratio increased. As anthracite fraction was increased, exit combustible content over feeding combustible content was increased. Regardless of anthracite fraction, size distribution of bed material from discharge was almost constant. Over bed temperature 850℃ and excess air 20%, the difference of combution efficiencies were little. It is estimate that the combustion condition in anthracite-bituminous coal blend combustion is suitable at the velocity 0.3m/s, bed temperature 850℃, the excess air 20%.