검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 9

        1.
        2015.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 자몽종자추출물이 도포 포장지의 항균활성에 미치는 영향을 알아보았다. 저장 안전성 중 항균력을 확인 하기 위하여 그람 양성균(B. cereus, L. monocytogenes) 2종 과 그람 음성균(E. coli, S. enteritidis) 2종을 선택하였다. 자몽종자추출물의 농도별(60-5,000 ppm)에 따른 그람 양성 균의 투명환 크기는 최저 5 mm에서 최고 21 mm로 나타내 었다. 또한 그람 음성균의 투명환 크기는 최저 0 mm에서 최고 7 mm로 나타내었다. 자몽종자추출물을 농도별(60- 5,000 ppm)로 도포 포장시킨 경우 그람 양성균의 투명환 크기는 최저 5 mm에서 최고 19 mm로 나타내었다. 또한 그람 음성균의 투명환 크기는 최저 7 mm에서 최고 11 mm 로 나타내었다. 자몽종자추출물을 처리한 도포 포장지를 이용하여 즉석섭취 식품에 대한 저장 안정성을 알아본 결 과, GFSE의 농도(1,000, 5,000, 10,000 ppm) 차이에 따라 각각 11시간, 16시간, 18시간 동안 신선도가 유지 되었고, 일반 세균수 측정 결과, 1,000, 5,000 ppm 및 10,000 ppm 에서 각각 4.5 log CFU/g, 4.8 log CFU/g, 4.2 log CFU/g로 측정되어 저장성을 증가 시킴을 알 수 있었다.
        4,000원
        2.
        2017.03 KCI 등재 서비스 종료(열람 제한)
        Germination characteristics, seedling emergence, and early seedling growth of iron-coated rice seeds, cultivars Daebo and Samdeokbyeo, under different water depths were compared with those of non-coated seeds (control) and the results evaluated to obtain basic information for establishing stable seedlings in direct water seeding. The total germination percentage of the two seed treatments was similar, but iron-coated seeds had slightly faster germination and shorter mean germination time than non-coated seeds. Water absorption rates of iron-coated seeds were lower than that of non-coated seeds during seed germination. The germination percentage of the two iron-coated rice seed cultivars showed a significant decline of 15-22% after one year of storage under natural conditions. The seedling emergence percentage and uniformity of the two rice cultivars were significantly higher in the iron-coated seeds at 1-13 cm water depths but the percentage of floating seedlings was lower in iron-coated seeds than in non-coated seeds. The iron-coated seeds had a high seedling emergence percentage of 91.3-93.3% at all flooding depths whereas the non-coated seeds had a significantly low seedling emergence percentage of 57.7-71.7% at a water depth of 13 cm. Moreover, the shoot dry weight and seedling health score of iron-coated seeds were significantly higher than those of non-coated seeds, while root dry weights were similar in iron-coated and non-coated seeds, regardless of water depth. These results suggest that iron-coated seeds are more appropriate for stable seedling establishment in direct water seeding than are non-coated seeds.
        3.
        2017.03 KCI 등재 서비스 종료(열람 제한)
        We investigated the effect of silicate coating of rice seeds on bakanae disease incidence and the quality of seedlings raised in seedling boxes and transplanted into pots. The silicate-coated rice seed (SCS) was prepared as follows. Naturally infested rice seeds not previously subjected to any fungicidal treatment were dressed with a mixture of 25% silicic acid at pH 11 and 300-mesh zeolite powder at a ratio of 50 g dry seed - 9 mL silicic acid - 25 g zeolite powder. The following nursery conditions were provided : Early sowing, dense seeding in a glass house with mulching overnight and no artificial heating, which were the ideal conditions for determining the effect on the seed. The nursery plants were evaluated for Gibberella. fujikuroi infection or to determine the recovery to normal growth of infected nursery plants in the Wagner pot. Seedlings emerged 2-3 days earlier for the SCS than they did for the non-SCS control, while damping-off and bakanae disease incidence were remarkably reduced. Specifically, bakanae disease incidence in the SCS was limited to only 7.8% for 80 days after sowing, as compared to 91.6% of the non-SCS control. For the 45-days-old SCS nursery seedlings, the fresh weight was increased by 11% and was two times heavier, with only mild damage compared to that observed for non-SCS. Even after transplanting, SCS treatment contributed to a lower incidence of further infections and possibly to recovery of the seedlings to normal growth as compared to that observed in symptomatic plants in the pot. The active pathogenic macro-conidia and micro-conidia were considerably lower in the soil, root, and seedling sheath base of the SCS. In particular, the underdeveloped macro-conidia with straight oblong shape without intact septum were isolated in the SCS ; this phenotype is likely to be at a comparative etiological disadvantage when compared to that of typical active macro-conidia, which are slightly sickle-shaped with 3-7 intact septa. A active intact conidia with high inoculum potential were rarely observed in the tissue of the seedlings treated only in the SCS. We propose that promising result was likely achieved via inhibition of the development of intact pathogenic conidia, in concert with the aerobic, acidic conditions induced by the physiochemical characteristics associated with the air porosity of zeolite, alkalinity of silicate and the seed husk as a carbon source. In addition, the resistance of the healthy plants to pathogenic conidia was also important factor.
        4.
        2016.03 KCI 등재 서비스 종료(열람 제한)
        To investigate the effect of soluble silicate zeolite dressing of the rice against bakanae disease, field trial in reclaimed land and in vitro were carried out. The coated rice seeds (SCS) which were dressed with the mixture of 25% silicic acids (binder), and the zeolite (coating powder). In wet direct seeding, uniform scattering of rice seeds on the soil surface and the better seedling establishment were shown in SCS treatment plots. The incidence of bakanae disease began from the mid tillering stage toward the heading stage. Around heading stage, the ratio of infected tillers reached its highest point by 9.9% in non-SCS treatment plots. While, in SCS treatment plots, the ratio of infected tillers was no more than 0.01%. The vitality of the pathogenic fungi of bakanae disease in the SCS and non-SCS samples were assessed. Samples were incubated for one week keeping proper humidity at 30°C after inoculated with panicles of infected rice plants from experimental field plots. In non-SCS treatment, pinkish colonies were formed on the grain surface of panicle of infected plants, and mycelium, macro-conidia and micro-conidia were developed actively inside part of infected grain inoculated. While in SCS treatment, micro-conidia and mycelium were not survived and the growth of macro-conidia, mycelia were greatly inhibited and withered. Based on the results, it is concluded that the environmental friendly control of bakanae disease by use of SCS is possible and soluble silicate can be applied as agents for replacement of seed disinfection.
        7.
        2006.08 KCI 등재 서비스 종료(열람 제한)
        A new light green seed coat Azuki bean cultivar, "Yeonkeum" was developed at the National Institute of Crop Science(NICS) and the Yeongnam Agricultural Research Institute (YARI) in 2005. Yeonkeum was selected from the cross between Jaja-sodun and "IT12099
        8.
        2005.02 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        본 연구는 홍화씨 가공제품의 산패방지 및 품질 향상을 위하여 가식성 필름을 코팅하여 저장 중의 물리화학적 변화를 조사하였다. 가식성 필름 용제로 코팅한 홍화정의 색도 변화는 저장기간이 길어질수록 명도 L 값과 적색도 a 값은 조금씩 증가하였으며 황색도 b 값은 감소하였다. 코팅한 홍화정의 수분함량의 변화는 저장기간이 길어질수록 약간의 증가보였으나 큰 변화는 없었다. 산가는 저장온도에 관계없이 저장기간이 길어질수록 가식성 필름 용제로 코팅한 홍화정
        9.
        2004.03 KCI 등재 서비스 종료(열람 제한)
        The film coated snap bean (Phaseolus vulgaris) seeds with five different coating materials treated with 3% increase in seed weight were planted at sandy loam soil controlled moisture content of 18, 19, 20 and 21 %. The oxygen diffusion rate (ODR) was calculated from the different moisture content soil. The number of normal seedlings, seedling vigor, and seedling capability in field (seed vigor x dry matter weight) were observed at 9 days after planting and compared to the changes of ODR. The germination rate and ODR were sharply decreased simultaneously in the seeds planted at 21 % soil moisture content. Seedling emergence did not occur at all as the soil moisture content increased above 22 %. Hence this value should be considered as the threshold of soil moisture content for seedling emergence. An ODR value under 20% did not influence the percent emergence significantly. The certain difference observing in the emergence at the same ODR was not related clearly to the condition of soil. So it can be assumed that the limit of soil moisture content for the emergence of snap bean was approximately 20%. The value of 18% soil moisture content may be considered as the optimum for snap bean emergence. There was close relationship between the mean value of ODR in different soil moisture contents and the emergence. The germination rates of the seeds coated with the different materials were quite different when the seeds were planted at 21 % soil moisture. Dry weight of the seedlings from film coated seeds was decreased slightly, but the germination rates were not much different from the non-treated control under relatively higher soil moisture content (21 %). Major factor lowering emergence rate was oxygen stress while film coating act as a minor constraint for snap bean sown in excess soil moisture condition.