Most of the radioactive wastes generated during the nuclear fuel processing activities conducted by KEPCO Nuclear Fuel Co., Ltd. are classified as the categories of intermediate and low-level radioactive waste. These radioactive waste materials are intended for permanent disposal at a designated disposal site, adhering strictly to the waste acceptance criteria. To facilitate the safe transportation of radioactive waste to the disposal site, it is necessary to ensure that the waste drums maintain a level of criticality that complies with the waste acceptance criteria. This necessitates the maintenance of subcritical conditions, under immersion or optimal neutron moderation conditions. This paper presents a criticality safety assessment of concrete radioactive waste under the most conservative conditions of immersion and moderation conditions for waste drums. Specifically, In order to send radioactive waste, which is the subject of criticality analysis, to a disposal facility, pre-processing operations must be performed to ensure compliance with waste accepatance criteria. To meet the physical characteristics required by the accepance criteria, particles below 0.2 mm should not be included. Thus, a 0.3 mm sieve is used to separate particles lager than 0.3 mm, and only those particles are placed in drums. The drums should be filled to achieve a filling ratio of at least 85%. A criticality analysis was conducted using the KENO-VI of SCALE. The Criticality Safety Analysis Results of varying the filling ratio of concrete drums from 85% to 100% presented in an effective multiplication factor of 0.22484. Additionally, the effective multiplication factor presented to be 0.25384 under the optimal moderation conditions. This demonstrates full compliance with the USL and criticality technology standards set as 0.95.
미임계 시설은 정상 또는 사고상태에서 핵임계안전성이 확보되어야 한다. 이를 위해선 계산된 임계도가 바이어스와 불확실도로 결정된 미임계상한치(USL)를 초과하지 않는다는 것을 검증하는 절차가 반드시 필요하다. 하지만 핵임계안전성 검증 방법론은 여러 가지가 존재하며, 방법론이 달라지면 USL도 달라지므로 가장 적절한 한가지의 방법론으로 평가하는 것이 중요하다. 본 연구에서는 핵임계안전성 검증 방법론이 기술된 두 개의 문서를 비교 분석하여 한 가지 방법론으로 정립하였고, SCALE6.1 코드를 이용한 용기 설계에서의 미임계상한치 결정에 적용하였다.