The feasibility study of using converter slag as a solidifying agent of digested sewage sludge cake has been performed. The availability of converter slag as solidifying agent has been investigated by several trial tests. Based on the trial test results, the optimum mixing ratios of sludge cake and solidification additive are estabilished. Finally the solidification characters of sludge cake are elucidated by SEM and EDS. It is ascertained that converter slag with a small amount of quicklime enhences the solidification. From the result of pH test, overall pH of specimens tends to decrease slowly with curing time. After solidifying specimens had been cured for 7 days, these are water-cured for 24 hours. The weight and strength of all the specimens are nearly the same regardless of the mixed ratios of solidifying agent. The result of leaching tests for four heavy metal ions, Cd, $Cr^{6+}$, Pb and Cu show that the leaching strength becomes below the decision criteria of the specific wastes, respectively. The SEM observation of the delicate structure shows that needlelike crystals appear after solidification which are not observed before. From the EDS analysis, it is found that the main ingredients of needlelike crystals are Ca, Si, Al and O.
Laboratory experiments were conducted to investigate the effect of digestion temperature on the settleability and dewaterability of anaerobically digested sludge. The digesters were operated at a hydraulic retention time of 20 days with a loading rate of 0.63~0.66kg volatile solids per cubic meter per day at the temperature of $35^{\circ}C$ and $55^{\circ}C$. A mixed primary and secondary municipal sludge was used as a feed. The interface height of the sludge during settling test was recorded to identify settleability. As a measure of dewaterability of the sludge, specific resistance and capillary suction time were also measured with and without chemical conditioning. Higher digestion efficiency was obtained at $55^{\circ}C$ than $35^{\circ}C$. However, the settleability and dewaterability of the sludge at $35^{\circ}C$ were quite higher than those of the sludge digested at $55^{\circ}C$. The optimum dosages of ferric chloride for sludge conditioning were 0.4% and 0.6% at $35^{\circ}C$ and $55^{\circ}C$, respectively. The filtrate COD of the sludge digested at $55^{\circ}C$ was higher than at $35^{\circ}C$, which means that poor dewaterability of the sludge result in high filtrate COD.
In this study, we evaluated the effect of the type of sewage sludge (digested, non digested) on drying efficiency according to the polymer injection rate. The drying characteristics were shown using a near-infrared ray (NIR) and a microwave. As a result of the drying characteristics with NIR at a polymer dose ratio of 8%, the heating up period is up to 6 minutes after the start of the drying experiment. Afterwards, the constant rate drying period of the digested sludge (A, C and G sites) was 6 minute → 18 minute, showing a rapid decrease in moisture. On the other hand, non digested sludge (B, D, E, F, H, I, J and K sites) showed gradual drying characteristics compared to digested sludge until complete drying (10%). As the polymer dose ratio of 10% and 12%, the heating up period for digested sludge is up to 6 minute after the start of the experiment. Afterwards, the constant rate drying period of the digested sludge was 6 minute → 20 minute, showing a rapid decrease in moisture. On the other hand, the heating up period of non digested sludge was up to 10 minute after the start of the experiment, and the constant rate drying period was 10 minute → 22 minute, which was shorter than digested sludge. As a result of the drying characteristics with microwave at a polymer dose ratio of 8%, 10% and 12%, the constant rate drying period the digested sludge was 4 minute → 20~22 minute, showing a rapid decrease in moisture. On the other hand, non digested sludge of the constant rate drying period was 4 minute → 22~30 minute, which was longer than digested sludge.
This study was conducted to investigate the feasibility of nutrient recovery and reuse from centrate, which was produced by the centrifugal dewatering of anaerobic digested sludge. A continuous stirred reactor was operated for 3 months to recover phosphorous and nitrogen as magnesium ammonium phosphate (MAP) crystals from the centrate. More than 95% of phosphate could be recovered from the centrate into the crystalline materials. The contents of TP and TN in the crystalline materials were 28.1% and 5.17%, respectively. Some heavy metals were identified, but remained under Korean standards for organic fertilizer. On the other hand, X ray diffraction analysis clearly showed that the crystalline materials was MAP crystals. However, chemical analyses suggested that some undesirable crystals like magnesium potassium phosphate or hydroxyapatite might be formed during the MAP crystallization. Nevertheless, both results strongly confirmed that the MAP crystals could be a useful and valuable nutrient fertilizer, which slowly and continuously releases essential nutrients in response to the demand from farming and planting.
The effect of mixed oil on the drying characteristics of sewage sludge in oil vacuum evaporation systems was studied. The experimental results showed that the drying rate with cooking oil was faster than that with refined oil due to the difference of thermal conductivity and composition of mixed oil. However, the heating value of all dried sludge was enhanced and the moisture content was below 1% due to penetration of oil into the microbial cells in sludge during the drying procedure. TGA analysis of sludge mixed with the refined oil, which had a higher volatility, showed the slope of the primary falling period was sharply declined. The result of DTA analysis also showed that the first peak was higher than the second peak and corresponded with the phenomena observed in the TGA analysis. In the DTA analysis, the temperature of the primary peak and the secondary peak of dried sludge were comparatively lower than those of raw sludge. Therefore, mixed oil could decrease the self-ignition temperature in an oil-sludge mixing system. In case of waste cooking oil, the TGA and DTA results showed similar results to those of raw sludge, but the DTA results showed that the secondary peaks of dried sludge were narrower and sharper than those of raw sludge. Overall, mixing oil could be a principal factor in controlling the drying efficiency and thermal properties of sludge-derived fuel in oil vacuum evaporation systems.
By the strengthening of sewage treated quality law and the amount of sewage sludge every year is increasing in Korea. However, it is difficult to disposal of sewage sludge due to ocean dumping restriction. As an alternative to this, drying, incineration, anaerobic digestion etc. is applied, which is uneconomical in most be processed by the consumption of energy. In particular, anaerobic digestion technology has been installed in the sewage treatment 65 plats in Korea’s STP(sewage treatment plant). It is most of the digestion efficiency requires the application of improved technology to less than 50%. As an improvement technology for most anaerobic digester, ultrasonic, electronic beam, ozone etc. solubilization method using has been mainly used. Therefore, in this study, after the wet milling particles of sludge to subject the sludge that has not been decomposed in the digested sludge circulating fluid of anaerobic digestion, was let examine the characteristic at the time of ozonation. The size of the particles before and after the wet milling, which is the measurement at each 105.26 μm and 77.18 μm, solubilization rate is increased to 23.5%. When ozonation after wet milling using sludge is determined as possible to improve the efficiency.
This study investigated the semi-continuous and continuous cultivation of microalgae-sludge for artificial digested food wastes leachate treatment, and the effect of hydraulic retention times(HRT) on microalgae growth and nutrient removal. In this study, two reactors were examined the HRTs from 4 to 1 day, the Chlorella vulgaris cell density of semi-continuous and continuous cultivation reached a maximum value at HRT 3 day, then decreasing HRT to 2 day and 1 day the Chlorella vulgaris cell density was decreased. The maximum Chlorella vulgaris cell density in semi-continuous cultivation was 1.4 times higher than continuous cultivation. The maximum NH4-N, PO4-P removal efficiency was 100%, 75.7% with HRT of 3 day in semi-continuous cultivation, while 96.5%, 65.7% with HRT of 4 day in continuous cultivation. These results indicate that semi-continuous cultivation is more suitable than continuous cultivation. And the effect of increased light intensity from 100 μmol/m²/s to 400 μmol/m²/s was also evaluated, as the result, increased light intensity improved Chlorella vulgaris cell growth and nutrient removal.
The drying and fuel technologies for sewage sludge have been developed due to the prohibition of ocean dumping and new renewable portfolio standard. This study was performed to enhance the quality of sludge derived fuel and compare drying characteristics for thickened and digested sewage sludge at different temperature, pressure and mixing oil conditions in oil vacuum evaporation system. In addition to investigate calorific value and characteristic analysis of dried sludge. The thickened and digested sludge used in this study were taken from municipal sewage treatment plant and coagulated using polymer (C-310P) in laboratory. The drying rate was increased with temperature and degree of vacuum and it was 25 mL/kg-sludge·min at 110oC and –450 mmHg. The moisture content of dried sludge products showed very low within 1% in the range of 0.4 ~ 0.8%. The evaporation rate of thickened sludge was lower than digested sludge and the constant evaporation period was also shorter. Compared the effect of waste cooking oil and refined waste petroleum oil on drying efficiency, the waste cooking oil showed more effective than refined oil in evaporation rate and drying time. The carbon and hydrogen contents of dried sludge with refined oil were higher than waste cooking oil. The low heating value of thickened dried sludge was higher than digested dried sludge about 400 kcal/kg and both of dried sludge showed high calorific value more than 4,000 kcal/kg.
Organophosphorus pesticides (OPPs) contents in the sewage sludge derived from the residential and industrial areas were determined in order to characterize contemporary organic contamination levels as a part of the ongoing development of the environmentally sound sewage sludge management strategy in Korea. OPPs were extracted from freeze-dried sludges in a ultrasonic extractor. The extracts were cleaned-up by florisil column and subsequently fed into gas chromatograph/nitrogen phosphorus detector (GC/NPD) for determining OPP contents. Diazinon, dimethoate, disulfoton, EPN, malathion, methyl parathion, parathion, phorate and sulfotep were present in the appreciable amount in the domestic sewage sludges. The sum of the 9 OPPs in the sewage sludge varied from 534.8 to 15552.1 ㎍/kg, dry wt..
The 16 priority PAHs (Polycyclic Aromatic Hydrocarbons) designated by US Environmental Protection Agency were analyzed for some digested sludges from wastewater treatment plants in Korea. PAHs are an important group of organic contaminants present in sewage sludge due to their persistence and toxic potential. PAHs were extracted from freeze-dried sludges using a methylene chloride-methanol (2:1) mixture in a soxhlet extractor. The extracts were cleaned-up by silica gel/alumina combination column and subsequently fed into gas chromatograph/mass spectrometer (GC/MS) for determining PAH contents. The sum of the 16 PAHs in the sewage sludge varied from 534.8 to 5754.5 ㎍/kg, dry wt.. In the sewage sludge, phenanthrene appears as the most abundant PAHs, followed by naphthalene, pyrene, fluoranthene. Source of the investigated sewage sludges relatively predominated pyrogenic. PAHs levels of sewage sludges in Korea appeared to be lower than those in other countries.