A process known as the MR and EMR combination process is able to overcome the shortcomings of the MR (metallothermic reduction) and EMR (electronically mediated reaction) process. The effects of as the raw material, sodium as the reducing agent and KCl/KF as the diluent on the characteristics of tantalum powder are investigated. In this study, a MR-EMR combination process has been employed to tantalum powder on the location of reductant. The excess of reductant were varied from 25, 50 to 75 wt%. The total charge and external circuit decreases as the amount of reductant increases. The average particle size increases with increasing the amount of reductant.
In the metallothermic reduction (MR) process used to obtain tantalum powder in one batch, it is difficult to control the morphology and location of the tantalum deposits. On the other hand, an electronically mediated reaction (EMR) process is capable of overcoming this difficulty. The effect of using as the raw material and sodium as the reducting agent on the characteristics of tantalum powder are investigated. As the temperature of the reduction varied from 1023K to 1223K, the powder particles obtained with MR were relatively large , while those prepared via EMR were of uniform . In the MR process, the Ta powder recovery rate increased from 37% to 83% at 1123K in constrat with EMR process.
In this study, tantalum powder has been producted by MR-EMR combination process. MR-EMR combination process is a method that is able to improve demerits of MR(metallothermic reduction) and EMR(electronically mediated reaction) process. This study examined the characteristics of powder with the amount of reductant excess using TaF as feed materials, Na as a reductant and KCl/KF as a diluent. In addition, this study examined acid treatment that affect the high purification of powder. The impurities contained in powder was removed in various conditions of acid treatment. The total charge passed through external circuit and average particle size(FSSS) were increased with increasing amount of sodium excess. The proportion of fine particle(-325mesh) was decreased with increasing amount of sodium excess. The yield was improved from 70% to 76% with increasing amount of sodium excess. Considering the impurities, charge, morphology, particle size and yield, an amount of sodium excess of 10wt% were found to be optimum conditions for MR-EMR combination process.s.
In the conventional metallothermic reduction (MR) process for obtaining tantalum powder in batch-type operation. it is difficult to control morphology and location of deposits. On the other hand, a electronically mediated reaction (EMR) process is capable to overcome these difficulties and has a merit of continuous process, but it has the defect that the reduction yield is poor. MR-EMR combination process is a method that is able to overcome demerits of MR and EMR process. In this study, a MR-EMR combination process has been applied to the production of tantalum powder by sodium reduction of TaF. The total charge passed through external circuit and average particle size (FSSS) were increased with increasing reduction temperature. The proportion of fine particle (-325 mesh) was decreased with increasing reduction temperature. The yield was improved from 65% to 74% with increasing reduction temperature. Considering the charge, impurities, morphology, particle size and yield, an reduction temperature of 1,123 K was found to be optimum temperature for MR-EMR combination process.s.
If the MR fluid damper does not work, the magnetic powder (carbonyl iron powder) will sediment. To overcome this problem, we developed an EMR (Enhanced Magneto Rheological Fluid) fluid and evaluated control performance. For the dynamic load test using MR fluid and EMR fluid was conducted to evaluate control power and DR (Dynamic Range). In the damper performance test, the current was tested at intervals of 0.5A from 0.0A to 2.5A, and the control power of the EMR fluid was 84% compared to the control power of the MR fluid, The DR of the EMR Damper was 7.5. When the DR is 5.0 or higher, it is generally used as a semi-active control device. Therefore, the EMR fluid has proved its usability as a semi-active control device by showing 7.5 DR to 76% control performance of existing MR damper.