Bortezomib (BTZ) and dasatinib (DA) are two substantial anti-cancer agents with side effects on the human body. In this research, we fabricated a novel electrochemical sensor modified by CuFe2O4/ SmVO4 nanocomposite and 1-ethyl-3-methylimidazolium chloride (1E3MC) as an ionic liquid (IL) ( CuFe2O4/SmVO4/IL/CPE) for coinciding investigation of BTZ and DA for the first time. The CuFe2O4/ SmVO4 synthesized were determined and certified through field-emission scanning electron microscopy (FE-SEM), energy diffraction X-ray (EDX), and X-ray diffraction (XRD). The capability of the sensor was investigated by different electrochemical techniques such as cyclic voltammetry (CV), chronoamperometry (CHA), differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy (EIS). The attained data showed that the oxidation signal of bortezomib and dasatinib promoted as an innovative electrochemical sensor. After optimization of the conditions using this sensor at pH 7.0, the oxidation signal of bortezomib and dasatinib showed to be linear with drug concentrations in the range of 0.09–90 μM and 100–500 μM with a detection limit of 5.4 nM and 7.0 μM, respectively, using differential pulse voltammetry method. The values of D and electro-transfer coefficient (α) achieved 2.5 × 10− 5 cm2 s− 1 and 0.99, respectively. The proposed electrochemical sensor exhibited acceptable selectivity and sensitivity for simultaneous detection of bortezomib and dasatinib in pharmaceutical and biological samples.
Sulfamonomethoxine (SMM) is widely used to inhibit Gram-positive and Gram-negative bacteria, and improper use of SMM is detrimental to human health and ecological stability. Therefore, a sensitive determination method is of great importance for monitoring SMM residues in water, meat, milk, eggs, etc. Herein, a Pt-functionalized S-doped graphitic carbon nitride (Pt/Sg- C3N4) was constructed for the electrochemical determination of SMM. The as-developed Pt3/ S3-g-C3N4 sensor showed a significant SMM determination performance. The electrochemical oxidation of SMM on Pt3/ S3-g-C3N4/GCE involves two electron transference and was limited by a diffusion process. The as-developed Pt3/ S3-g-C3N4/GCE sensor has good linearity in a wide range of 0.1–120 μmol/L and a remarkably low limit of detection (LOD) of 0.026 μmol/L for SMM determination. In addition, the sensor has high selectivity and anti-interference properties for SMM detection. Furthermore, this Pt3/ S3-g- C3N4/GCE sensor has good reproducibility and stability. Moreover, the recoveries were in the range of 89.6–112.2% for the detection of the SMM in a real sample of egg. The proposed Pt3/ S3-g-C3N4/GCE sensor shows great potential for practical applications in detecting trace amounts of antibiotics.
Environmental pollution has become an alarming issue for the modern world due to the extensive release of untreated chemical waste into freshwater bodies. Untreated chemical waste poses significant negative impacts on aquatic life and human health. The phenolic compounds are widely used in different industries for dyeing, as food preservatives, and for the production of pesticides. 2,4,6-Trichlorophenol (TCP) is among the most hazardous phenolic compounds that cause several serious health effects. Thus, it is important to monitor TCP in the environmental samples frequently. In the current work, it was aimed to develop a highly sensitive zinc oxide-doped (ZnO) reduce graphene oxide (rGO) composite-based electrochemical sensor for TCP monitoring in the real samples. In this regard, graphene oxide (GO) was simultaneously reduced and doped with ZnO using a facile microwave-assisted synthesis strategy. The resulting ZnO/rGO composite was successfully utilized to fabricate ZnO/rGO-modified glassy carbon electrode (ZnO/rGO/GCE) for the selective and trace level determination of TCP. The conductivity and electrocatalytic behaviors of ZnO/rGO/GCE were examined through different modes of electrochemical setup. Under the optimal operating conditions such as a scan rate of 80 mV.s−1, PBS electrolyte (pH 7.0), and the concentration range of 0.01–80 μM, the fabricated electrochemical sensor manifested outstanding responses for monitoring TCP. The limit of detection (LOD) and limit of quantification (LOQ) of the ZnO/rGO/GCE for TCP were found as 0.0067 μM and 0.019 μM, respectively. Moreover, the anti-interference profile and stable nature of ZnO/rGO/GCE made the suggested electrochemical sensor a superb tool for quantifying TCP in a real matrix.
A simple and one-pot synthetic procedure using two different sources has been demonstrated to prepare heteroatoms doped reduced graphene oxide such as nitrogen-doped reduced graphene oxide (N-RGO) and sulfur-doped reduced graphene oxide (S-RGO). The N-RGO has been hydrothermally synthesized using urea as nitrogen precursor, wherein the S-RGO has been synthesized using dimethyl sulfoxide (DMSO) as sulfur precursor. The successful N-doping, S-doping and other physicochemical properties of N-RGO and S-RGO have been confirmed with different spectroscopic and electrochemical techniques. The results indicated that doping into the graphene structure exhibits a high conductivity and a better transfer of charge. Moreover, heteroatoms doped graphene (N-RGO and S-RGO) and graphene-related materials (RGO) have been applied for the individual detection of uric acid (UA). Interestingly, the N-RGO exhibited a lower limit of detection (LOD, S/N = 3) of 2.7 10– 5 M for UA (10–1000 μM) compared with undoped RGO and S-RGO. Furthermore, the simultaneous detection of UA in the presence of Xanthine (XA) has been demonstrated a wide linear range of detection for UA: 10–1000 μM, with unchanged concentration of XA to be 200 μM, and exhibited a low limit of detection of 8.7 10− 5 M ( S∕N = 3) for UA. This modified sensor based on N-RGO has revealed a high selectivity and reproducibility thanks to its large surface area, high catalytic properties, and chemical structure. Indeed, the practical applicability of the proposed sensor has been evaluated in milk samples even in the presence of high concentrations of UA with satisfactory results.
In the present investigation, a new electrochemical sensor based on carbon paste electrode was applied to simultaneous determine the tramadol, olanzapine and acetaminophen for the first time. The CuO/reduced graphene nanoribbons (rGNR) nanocomposites and 1-ethyl 3-methyl imidazolinium chloride as ionic liquid (IL) were employed as modifiers. The electrooxidation of these drugs at the surface of the modified electrode was evaluated using cyclic voltammetry (CV), differential pulse voltammetry (DPV), electrochemical impedance spectroscopy (EIS) and chronoamperometry. Various techniques such as scanning electron microscopy (SEM) with energy dispersive X-Ray analysis (EDX), X-ray diffraction (XRD) and fourier-transform infrared spectroscopy (FTIR), were used to validate the structure of CuO-rGNR nanocomposites. This sensor displayed a superb electro catalytic oxidation activity and good sensitivity. Under optimized conditions, the results showed the linear in the concentration range of 0.08–900 μM and detection limit (LOD) was achieved to be 0.05 μM. The suggested technique was effectively used to the determination of tramadol in pharmaceuticals and human serum samples. For the first time, the present study demonstrated the synthesis and utilization of the porous nanocomposites to make a unique and sensitive electrode and ionic liquid for electrode modification to co-measurement of these drugs.
The central theme of this work is the synthesis of single-walled carbon nanotubes (SWCNTs) through the chemical vapor deposition method (CVD). Single-walled carbon nanotubes are synthesized using catalyst-chemical vapor deposition of acetylene at 750 °C temperature. X-ray diffraction study gives a characteristic peak (002) at 26.55° corresponding to the existence of carbon nanotube confirms that the particles are crystalline in nature and hexagonal phase. An SEM and HRTEM outcome gives surface morphology of SWCNTs. The elemental composition was confirmed by EDAX. The ideal concentration of single-walled carbon nanotubes was used to design a novel electrochemical sensor for determining paracetamol (PA) using cyclic voltammetry. Electrochemical determination of paracetamol is described using a single-walled carbon nanotube modified carbon paste electrode (SWCNT/MCPE). The SWCNT/MCPE was used in this study to detect paracetamol electrochemically at pH 7.2 in a 0.2 M PBS with a scan rate of 50 mV s− 1. A single-walled nanotube modified carbon paste electrode was used to develop a sensitive and selective electrochemical technique for the detection of PA. The SWCNT/MCPE showed excellent electrocatalytic activity towards the oxidation of paracetamol in phosphate buffer solution. Therefore, with increased oxidation currents, the voltammetric responses of paracetamol at the bare carbon paste electrode are organized within cyclic voltammetric peaks.
This work describes the facile synthesis of silver nanoparticle-decorated zinc oxide nanocomposite through a simple glycol reduction method. The silver nanoparticle-decorated zinc oxide nanocomposite-based pencil graphite electrode has been validated as a perceptive electrochemical sensing podium towards nitrite. The morphology of the prepared nanocomposite has been characterized via specific spectroscopic and electrochemical techniques. The sensor exhibits a notable enhancement in the cyclic voltammetric response to nitrite oxidation at an ideal peak potential of 0.76 V in pH 6.0 acetate buffer. Under optimum conditions of nitrite directly expanded with their concentration in the range from 30 to 1400 μM with a detection limit of 14 μM.
This manuscript explains the effective determination of urea by redox cyclic voltammetric analysis, for which a modified polypyrrole-graphene oxide (PPY-GO, GO 20% w/w of PPY) nanocomposite electrode was developed. Cyclic voltammetry measurements revealed an effective electron transfer in 0.1 M KOH electrolytic solution in the potential window range of 0 to 0.6 V. This PPY-GO modified electrode exhibited a moderate electrocatalytic effect towards urea oxidation, thereby allowing its determination in an electrolytic solution. The linear dependence of the current vs. urea concentration was reached using square-wave voltammetry in the concentration range of urea between 0.5 to 3.0 μM with a relatively low limit of detection of 0.27 μM. The scanning electron microscopy was used to characterize the morphologies and properties of the nanocomposite layer, along with Fourier transform infrared spectroscopy. The results indicated that the nanocomposite film modified electrode exhibited a synergistic effect, including high conductivity, a fast electron-transfer rate, and an inherent catalytic ability.
In this study, magnetite (Fe3O4) nanoparticles were electrochemically synthesized in an aqueous electrolyte at a given potential of -1.3 V for 180 s. Scanning electron microscopy revealed that dendrite-like Fe3O4 nanoparticles with a mean size of < 80 nm were electrodeposited on a glassy carbon electrode (GCE). The Fe3O4/GCE was utilized for sensing chloramphenicol (CAP) by cyclic voltammetry and square wave voltammetry. A reduction peak of CAP at the Fe3O4/GCE was observed at 0.62 V, whereas the uncoated GCE exhibited a very small response compared to that of the Fe3O4/GCE. The electrocatalytic ability of Fe3O4 was mainly attributed to the formation of Fe(VI) during the anodic scan, and its reduction to Fe(III) on the cathodic scan facilitated the sensing of CAP. The effects of pH and scan rate were measured to determine the optimum conditions at which the Fe3O4/GCE exhibited the highest sensitivity with a lower detection limit. The reduction current for CAP was proportional to its concentration under optimized conditions in a range of 0.09-47 μM with a correlation coefficient of 0.9919 and a limit of detection of 0.09 μM (S/N=3). Moreover, the fabricated sensor exhibited anti-interference ability towards 4-nitrophenol, thiamphenicol, and 4-nitrobenzamide. The developed electrochemical sensor is a cost effective, reliable, and straightforward approach for the electrochemical determination of CAP in real time applications.
A possibility of the implementation of a quartz crystal sensor to the determination of chemical oxygen demand is examined by checking the electrochemical behavior of the sensor in a glucose solution. Since the surface of a quartz crystal has to be oxidized, a relatively active metal is coated on the surface of a usual 9 MHz AT-cut crystal. The electrochemical behavior is investigated by measuring the changes of current, resonant frequency and resonant resistance while a constant potential is applied. The crystal is installed in a specially designed container, and a quartz crystal analyzer is utilized to measure the frequency and resistance simultaneously. The variations of the measurements are examined at different concentrations of glucose solution, and a proper relation between the concentrations of glucose solution, and a proper relation between the concentration and the measurements is analyzed. As a result, it is found that a linear relation between the concentration of less than 900 ppm and the peak current when a constant potential of -180 mV (SSCE) is applied. The relation can be utilized for the determination of glucose concentration in sea water, and considering a direct relation between gluose concentration and chemical oxygen demand tells a possibility of the measurement of chemical oxygen demand using quartz crystal oscillators.