Radiation workers receive exposure during radiation works such as decontamination or cutting of metals and concrete in decommissioning nuclear power plants. To reduce occupational exposure, various radiation protection measures should be prepared by estimating the exposure dose in advance. RESRAD-RECYCLE, the computer code, is generally used for estimating occupational dose due to handling metals contaminated with radioactive materials. However, RESRAD-RECYCLE used the dose conversion factors (DCF) of EPA FGR No. 11 based on ICRP Publications 30 and 48 published in the 1980s for internal exposure estimation. This study compared the DCFs of RESRAD-RECYCLE with those of the relatively recently published ICRP Publications 119 and 141. In addition, the internal exposure dose was evaluated by changing the value of the DCFs of RESRAD-RECYCLE. As a result of the comparison, ICRP Publication 119 showed that the DCF values of most nuclides were significantly lowered. On the other hand, in the case of nuclides emitting gamma rays, there was generally no significant change in the value of DCFs. In addition, in the case of 65Zn and 94Nb, the DCF increased compared to the previous ICRP publications. The exposure dose of the decommissioning workers of Hanul Units 1 and 3 and Hanbit Unit 4 was also calculated in this study. The expected radioactivity concentration of the steam generator chamber of each unit was used as the source term. The concentration of metal dust in the air generated during cutting was calculated and applied to evaluate the internal exposure dose. As a result of the dose evaluation, there was a difference in exposure dose up to 0.2 mSv in the scrap cutter scenario of Hanbit Unit 4, which generated a lot of dust and had a high radioactivity concentration. On the other hand, in the case of the slag worker, there was no difference in the dose because the working time was very short, and the inhalation of metal dust was small, even if the latest DCF was applied.
In the dismantling process of a reactor coolant system (RCS) piping, a radiation protection plan should be established to minimize the radiation exposure doses of dismantling workers. Hence, it is necessary to estimate the individual effective dose in the RCS piping dismantling process when decommissioning a nuclear power plant. In this study, the radiation exposure doses of the dismantling workers at different positions was estimated using the MicroShield dose assessment program based on the NUREG/CR-1595 report. The individual effective dose, which is the sum of the effective dose to each tissue considering the working time, was used to estimate the radiation exposure dose. The estimations of the simulation results for all RCS piping dismantling tasks satisfied the dose limits prescribed by the ICRP-60 report. In dismantling the RCS piping of the Kori-1 or Wolsong-1 units in South Korea, the estimation and reduction method for the radiation exposure dose, and the simulated results of this study can be used to implement the radiation safety for optimal dismantling by providing information on the radiation exposure doses of the dismantling workers.
국내외적으로 유해물질의 통합 노출에 대한 관심은 높아지고 있다. 이러한 흐름에 따라 다양한 경로를 통해 노출될 수 있는 중금속에 대한 통합 노출 연구가 필요하다. 카드뮴과 납은 각각 신장 독성과 인지 장애 등 다양한 독성을 나타낼 수 있으며 또한 발암 물질로 알려져있다. 따라서 본 연구에서는 카드뮴과 납의 노출량 추정 및 통합 위해성 평가를 진행하였다. 2016, 2017년의 7기 국민건강 영양조사에 참여한 10,733명의 식품, 물, 흡연과 간접흡연, 호흡, 화장품, 여성용 위생용품을 통한 중금속 노출 추정량을 계산하였다. 결과적으로 카드뮴과 납 모두 식품을 통한 노출이 제일 높게 나타났다. 이외에도 흡연은 카드뮴의 주요한 노출원이었으며, 납은 화장품을 통해 높은 농도로 노출되었다. 통합 위해평가에서도 식품이 가장 큰 영향을 미쳤다. 지역적 특성의 차이는 노출 추정량의 차이를 보이지 못하였으나, 연령 별, 성별 간 노출 추정량은 큰 차이를 보였다. 특히, 월경 중인 성인 여성의 경우 카드뮴, 월경 중이지 않은 여성은 납의 노출 추정량이 더 높으며 신체 대사를 고려하였을 때, 그 위험성이 더 클 수 있음을 암시하였다. 결론적으로 노출량 추정 및 통합 위해평가 모두 식품이 주요 노출원이었다. 다만, 잠재적 위험을 방지하기 위해 다른 경로에 대한 노출량 추정 및 위해평가가 요구된다.
Hazardous air pollutants such as NO2, VOCs and PM10 were measured Daegu, Korea in major micro-environments,where housewives spend the most of their time, and personal exposure times were estimated by using time activitypatterns and exposure scenarios. The major microenvironments of housewives were selected using the ‘Time-UseSurvey’ conducted by the National Statistical Office in Korea in 2009. A total of 4,514 (weekdays) and 3,063(weekends) housewives were recruited for the ‘Time-Use Survey.’ It seems that housewives are spending about80% of their time in the house, and about 5% of their time outdoors during weekdays and weekends. The indoor/outdoor ratio of the average concentration of NO2 was more than 1, which indicated that the source was indoors.Toluene was shown to have higher concentrations indoors than outdoors. Ethylbenzene and xylene displayedsimilar characteristics to toluene, and the concentration ratio for indoor/outdoor was shown to be 1.29 ± 0.76 and1.04 ± 0.45, respectively, higher concentrations indoors. Based on the results of the time activity patterns ofparticipants, 3 kinds of exposure scenarios were formulated. The spent time and air concentration in eachenvironment were assumed as normal and lognormal distribution, respectively. And then the Monte-Carlosimulation was conducted. According to the result of the simulation, the exposures to hazardous air pollutantsrevealed an increasing pattern as housewives visits other indoor environments such as supermarkets.
Quantitative analyses of naturally occurring methanol were performed for the alcoholic beverages commonly consumed in Jecheon, Chungbuk province, South Korea. The headspace analysis method was optimized for the low and high alcoholic beverages. The external standard method was applied due to the overlapping of 2-propanol and 2-butanol (the internal standard candidates) with target sample matrix peaks. The target samples were selected based on the retail sales amounts of alcoholic beverages in the largest retailer food-mart chain, Jecheon, Chungbuk province, South Korea. There was no sample containing methanol over 0.5 ㎎/㎖, the Korean maximum level of methanol in alcoholic beverages (1.0 ㎎/㎖ for fruit originated liquor etc). The total exposure amount of methanol via alcoholic beverages was estimated based on the daily alcohol consumption of 40 g. The hazard indices calculated by methanol RfD 0.5 ㎎/㎏ bw day (US EPA) and ADI 20 ㎎/㎏ bw day (proposed by Lachenmeier etc.) were 0.301 and 0.008, respectively. As with the hazard index, aggregate exposures below a HI of 1.0 will likely not result in adverse noncancer health effects over a lifetime of exposure. Then the methanol exposure via the alcoholic liquours might not hazard to Jecheon citizen.
In this study, we estimated nitrogen dioxide (NO2) concentrations in microenvironments where residential indoor, residential outdoor, other indoors, and transportation using measured personal exposure and multiple linear regression analysis of time-weighted average model, and compared with measured NO2 concentration in microenvironments. Measured residential indoor, outdoor and other indoor NO2 concentration was 22.22±9.59 ppb, 23.64±9.62 ppb, and 22.07±13.90 ppb, respectively. NO2 concentrations in residential indoor and outdoor, total outdoor, other indoor, and transportation by multiple regression analysis were significantly estimated as 20.48 ppb, 32.79 ppb, 24.35 ppb, and 28.82 ppb, respectively (p= 0.000). Measured and estimated NO2 concentration were similar with each other, therefore NO2 concentrations in each microenvironment were able to be estimated using time-weighted average model and personal exposure with multiple regression analysis.
Indoor air quality tends to be the dominant contributor to personal exposure, because most people spend over 80% of their time indoors. In this study, indoor and outdoor NO2 concentrations were measured simultaneously with personal exposures of 30 university students in weekday and weekend in Daegu, Korea. House characteristics and subject's activity pattern were used to determine the effects on personal exposure. Since university students spent most of their times indoor, their NO2 exposure was associated with indoor NO2 level during both weekday and weekend in spite of different time activity. Using a time-weighted average model, NO2 exposures of university students were estimated by NO2 measurements in indoor home, indoor school, and outdoor home. In conclusion, major personal exposure to NO2 resulted from air quality of indoor environment at house.
With the development of nanotechnology, nanomaterials are used in various fields. Therefore, the interest regarding the safety of nanomaterial use is increasing and much effort is diverted toward establishment of exposure assessment and management methods. Occupational exposure limits (OELs) are effectively used to protect the health of workers in various industrial workplaces. This study aimed to propose an OEL for domestic multi-walled carbon nanotubes (MWCNTs) based on animal inhalation toxicity test. Basic procedure for development of OELs was examined. For OEL estimation, epidemiological study and quantitative risk assessment are generally performed based on toxicity data. In addition, inhalation toxicity data-based no observed adverse effect level (NOAEL) and benchmark dose (BMD) are estimated to obtain the OEL. Three different estimation processes (NEDO in Japan, NIOSH in USA, and Baytubes in Germany) of OELs for carbon nanotubes (CNTs) were intensively reviewed. From the rat inhalation toxicity test for MWCNTs manufactured in Korea, a NOAEL of 0.98 mg/㎥ was derived. Using the simple equation for estimation of OEL suggested by NEDO, the OEL of 142 μg/㎥ was estimated for the MWCNT manufacturing workplace. Here, we used test rat and Korean human data and adopted 36 as an uncertainty factor. The OEL for MWCNT estimated in this work is higher than those (2-80 μg/㎥) suggested by previous investigators. It may be greatly caused by different physicochemical properties of MWCNT and their dispersion method and test rat data. For setting of regulatory OELs in CNT workplaces, further epidemiological studies in addition to animal studies are needed. More advanced technical methods such as CNT dispersion in air and liquid should be also developed.
There has been a rapid increase of the concern on the space radiation effect on pilots, crew and passengers at the commercial aircraft altitude (~ 10 km) recently. It is because domestic airline companies, Korean Air and Asiana Airlines have just begun operating the polar routes over the North Pole since 2006 and 2009 respectively. CARI-6 and CARI-6M are commonly used space radiation estimation programs which are provided officially by the U.S. federal aviation administration (FAA). In this paper, the route doses and the annual radiation doses for Korean pilots and cabin crew were estimated by using CARI-6M based on 2012 flight records. Also the modeling concept was developed for our own space radiation estimation program which is composed of GEANT4 and NRLMSIS00 models. The GEANT4 model is used to trace the incident particle transports in the atmosphere and the NRLMSIS00 model is used to get the background atmospheric densities of various neutral atoms at the aircraft altitude. Also presented are the results of simple integration tests of those models and the plan to include the space weather variations through the solar proton event (SPE) prediction model such as UMASEP and the galactic cosmic ray (GCR) prediction model such as Badhwar-O’Neill 2010.
The assessment of personal exposure is a critical component in population-based epidemiologic studies of air pollution. This study was conducted to apply and compare the four exposure estimation methods of individual-level to air pollution concentration in a cohort including 2,283 subjects in Gwangyang, Korea. Individual-level exposure of air pollution were estimated using multiple approaches, including average across all monitors, nearest monitor, and spatial interpolation by inverse distance weighting and kriging. The mean concentrations of PM10, NO2, SO2, CO, O3 by four exposure estimation methods were slightly different but not significantly different from each other. Cross-validation showed that kriging was more accurate than other exposure estimation methods because kriging has probably predicted individual exposure levels equivalent to residential locations after estimating the parameters of a model according to the spatial surface of air pollution concentration. These data support that spatial interpolation methods may provide better estimates than selecting the value from the nearest monitor and averaging across values from all monitors by reflecting spatial attributes of air pollution on personal level.
Indoor and outdoor nitrogen dioxide (NO2) concentrations were measured and compared with measurements of personal exposures of 95 persons in Seoul, Korea and 57 persons in Brisbane, Australia, respectively. Time activity diary was used to determine the impact on NO2 exposure assessment and microenvironmental model to estimate the personal NO2 exposure. Most people both Seoul and Brisbane spent their times more than 90% of indoor and more than 50% in home, respectively. Personal NO2 exposures were significantly associated with indoor NO2 levels with Pearson coefficient of 0.70 (p<0.01) and outdoor NO2 levels with Pearson coefficient of 0.66 (p<0.01) in Seoul and of 0.51 (p<0.01) and of 0.33 (p<0.05) in Brisbane, respectively. Using microenvironmental model by time weighted average model, personal NO2 exposures were estimated with NO2 measurements in indoor home, indoor office and outdoor home. Estimated NO2 measurements were significantly correlated with measured personal exposures (r = 0.69, p<0.001) in Seoul and in Brisbane (r = 0.66, p<0.001), respectively. Difference between measured and estimated NO2 exposures by multiple regression analysis was explained that NO2 levels in near workplace and other outdoors in Seoul (p = 0.023), and in transportation in Brisbane (p = 0.019) affected the personal NO2 exposures.