검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3

        1.
        2009.12 KCI 등재후보 구독 인증기관 무료, 개인회원 유료
        The information about time spent in microenvironments plays a critical role for an exposure assessment of the person concerned, considering the personal exposure relies on the characterization of activity patterns of the population at risk and human activities impact the timing, location, and level of personal pollutant exposure. The purposes of this paper were to present indoor time activity patterns of Korean from a population-based study and to determine individual factors of time spent in microenvironments. The population based study collected time activity pattern of about 32,000 Korean for two consecutive days. The mean times spent at home, other indoors, outdoors, and transportation in related to the whole sample of 19.025 people are 14.23hrs(59.3%), 6.80hrs(28.3%), 1.26hrs(5.2%), and 1.75hrs(7.3%) in weekday, respectively. Database provides information on how the proportion of persons in different locations changes by time of day in weekday. Here, we see that over 90% of respondents were in a residence from about 11 PM to 5 AM, and the largest proportions of respondents in offices, factories, schools and public buildings occur between 8 AM and 5 PM.
        4,000원
        2.
        2006.03 KCI 등재후보 구독 인증기관 무료, 개인회원 유료
        Indoor air quality tends to be the dominant contributor to personal exposure, because most people spend over 80% of their time indoors. In this study, indoor and outdoor NO2 concentrations were measured simultaneously with personal exposures of 30 university students in weekday and weekend in Daegu, Korea. House characteristics and subject's activity pattern were used to determine the effects on personal exposure. Since university students spent most of their times indoor, their NO2 exposure was associated with indoor NO2 level during both weekday and weekend in spite of different time activity. Using a time-weighted average model, NO2 exposures of university students were estimated by NO2 measurements in indoor home, indoor school, and outdoor home. In conclusion, major personal exposure to NO2 resulted from air quality of indoor environment at house.
        4,000원
        3.
        2005.01 KCI 등재 서비스 종료(열람 제한)
        Several samplers using gravimetric methods such as high-volume air sampler, MiniVol portable sampler, personal environmental monitor(PEM) and cyclone were applied to determine the concentrations of fine particles in atmospheric condition. Comparative evaluation between high-volume air sampler and MiniVol portable sampler for PM10, and between MiniVol portable sampler and PEM was undertaken from June, 2003 to January 2004. Simultaneously, meteorological conditions such as wind speed, wind direction, relative humidity and temperature was measured to check the factors affecting the concentrations of fine particles. In addition, particle concentrations by cyclone with an aerodynamic diameter of 4 ㎛ were measured. Correlation coefficient between high- volume air sampler and portable air sampler for PM10 was 0.79 (p<0.001). However, the mean concentration for PM10 by high-volume air sampler was significantly higher than that by MiniVol portable sampler (p=0.018). Correlation coefficient between Minivol portable sampler and PEM for PM2.5 was 0.74 (p<0.001), and the measured mean concentrations for PM2.5 did not show significant difference. Difference of the measured concentrations of fine particle might be explained by wind speed and humidity among meteorological conditions. Particle concentration differences by measurement samplers were proportional to the wind speed, but inversely proportional to the relative humidity, though it was not a significant correlation.