This study investigated the use of bovine serum albumin (BSA) as alternatives to fetal bovine serum (FBS) in in vitro maturation medium. The oocyte maturation, cumulus cell-oocyte gap junctional communication, and development of bovine embryos were determined by assessing their cell number, lipid content, mitochondrial activity, gene expression and cryo-tolerance. Oocytes were cultured in TCM-199 supplemented with 1 μg/ml estradiol-17ß, 10 μg/ml FSH, 10 ng/ml EGF, 0.6 mM cysteine, 0.2 mM sodium pyruvate and either 8% BSA (BSA group), 10% FBS (FBS group), or neither BSA nor FBS (TCM group), and followed by in vitro fertilization and the zygotes were cultured in SOF-BE1 medium. The differences in embryo development between experimental groups were analyzed by one-way ANOVA. We have shown that the percentages of embryos that underwent cleavage and formed a blastocyst were non significantly different among all experimental groups (37.4 ± 1.5% for FBS group vs. 31.1 ± 3.9% for BSA group and 34.5 ± 1.6% for TCM group, six replicates were performed). Furthermore, there was no significant difference between the percentage of MII oocyte between FBS (71.8 ± 1.9%) and BSA groups (69.3 ± 2.3%). However, culture of oocytes with FBS increased (P < 0.05) the cumulus cell expansion as well as expression of gape junction proteins, CX37 and CX43, at both transcriptional and translation levels. We also found that FBS significantly increased total cell number and decreased the apoptotic index in day-8 blastocyst comparing to BSA group. The beneficial effects of BSA on embryos were associated with significantly reduced intracellular lipid content and increased mitochondrial activity in both oocytes and blastocyst. Taken together, these data suggest that supplementation of maturation medium with BSA, as alternatives to FBS, can be used as defined medium that support consistently the development of IVP bovine embryos.
Until recently, there have been many researches about the freezing methods and several methods of cryopreservation. Hypothermic preservation has been used to complement the embryo freezing technology. There is a study to show the successful results for long-term hypothermic preservation. For that reason, FBS and BSA are commonly added to the culture medium to support embryo development. We investigated the effectiveness of hypothermic preservation method at 4℃ according to embryonic developmental stages for Hanwoo embryos and evaluated the effect of FBS and BSA on Hanwoo embryos as a supplemental reagent in hypothermic preservation medium after recovering preserved embryos from hypothermic preservation. The present study reported that survival and hatching rates of embryos at morula stage following storage at 4℃ is Day 7 group was significantly higher (p < 0.05) compared than those of other groups (p < 0.05). As a result, the survival and hatching rates of embryos at the blastocyst stage following storage at 4℃ result is showed that significantly higher (p < 0.05) survival rates than those of other groups an Day 6. The result showed that hatching rate at Day 6 and 7 were significantly lower (p < 0.05) compared with other groups. The result regarding the survival and hatching rates of bovine embryos following storage at 4℃ for 72 h in various concentrations of BSA are shown The results showed that survival rate of 1% BSA group was not significantly different (p < 0.05) compare with control (FBS) group. Also, the results showed that hatching rate of control (FBS) and 1% BSA were significantly different (p < 0.05) compared with other groups. In conclusion, our result demonstrated that the hypothermic preservation did not effect on the survival and hatching rates of embryos after recovering. In addition, the supplementation of BSA in preservation medium showed no difference in the embryo developmental competence after hypothermic preservation compared to FBS treatment. With that, BSA can be an alternative reagent for the hypothermic preservation medium as an energy source and pH buffer.
The aim of present experiment was to examine hatching rate as in vitro indicator of viability of porcine embryos before early stage embryo transfer such as zygotes or 2-cell stage embryos. Cumulus-oocyte complexes (COCs) collected from ovaries were matured in North Carolina State University 23 (NCSU-23) containing 10% porcine follicular fluid (pFF), 10 ng/ml epidermal growth factor (EGF), follicle stimulating hormone (FSH), luteinizing hormone (LH), and 1mg/ml cysteine. After 24 hours, the COCs were transferred to the same medium without hormones. After 65h of maturation, oocytes were exposed to phosphate buffered saline (PBS) with 7% ethanol (v/v) for 7 minutes, and then the oocytes were washed and cultured in tissue culture medium (TCM) 199 containing 5 ug/ml cytochalasin B for 5h at in an atmosphere of 5% and 95% air with high humidity. After cytochalasin B treatment, the presumptive parthenotes were cultured in porcine zygote medium (PZM)-5 and cleavage of the parthenotes was assessed at 72h of activation, Normally cleaved parthenotes were cultured for an additional 8 days to evaluate their ability to develop to blastocyst and hatching stages. The fetal bovine serum (FBS) were added at Day 4 or 5 with concentrations of 2.5, 5 or 10%. The blastocyst rates were ranged within in each treatment. However hatching rate was dramatically decreased in non-addition group. In this experiment, embryo viability in female reproductive tract may be estimated before embryo transfer with in vitro culture adding FBS by hatching ability.
To determine the optimal concentration of fetal bovine serum (FBS) on the growth of insect cells and the multiplicity of viruses, the growth of cells (Sf21 and Bm5) and viruses were examined on the various concentrations of FBS. In view of the viability, growth speed, proliferation of cells and the amount of FBS, the most proper concentration for the cell culture were 7% and 5% for Sf21 and Bm5, respectively. The multiplicity of viruses at the various concentrations of FBS was similar in both cell lines at 5 days post-infection (p.i.). However, it differed significantly at 2 and 3 days p.i. The proper concentration of FBS were 10% and 3% for Sf21 at 2 and 3 days p.i., respectively, and 5% for Bm5 at both 2 and 3 days p. i. These results suggested that the optimal concentration of FBS should be determined according to the used cell lines and viruses for their optimum production.
본 연구는 체외에서 소 난포란유래의 배반포 생산에 있어서 배지 내에 첨가하는 외인성 고정질소 원으로써 아미노산과 FBS의 첨가효과를 검토하였다. 소 난포란의 체외성숙은 TCM-l99용액, 체외 수정은 Fer-TALP용액으로 행하였으며, 체외수정후 24시간째(day 1)의 수정난자를 체외배양에 제공하였다. 체외배양용 기초배지는 YS용액, 기초 배양법은 25개 난자/10 배지의 단순.미소적배양법을 이용하였다. 본 연구의 결과를 요약하면 다음과 같다. 1.