검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 13

        5.
        2018.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        FRP is a new material that has light, high strength and high durability characteristics and is emerging as a third construction material in and out of countries. However, very few studies have been done on curved FRP construction materials that can be used for tunnels or arched bridges. In particular, many joints are required for the application of curved panels to the open cut tunnel. Experimental data on the performance of the joint is required due to insufficient design criteria. The purpose of this study is to analyze the structural performance of real size, composite materials curved panels. To achieve this goal, curved panels were constructed and bending performance was tested. A numerical analysis was also performed and compared with the results of the test. The results of the test showed that the average load was 757.6 kN and the average displacement of bottom was measured at 53.12 mm. Compression stress on the upper flange and tensile stress on the lower flange were within acceptable limits of 50% of the allowable stress.
        4,000원
        6.
        2017.04 구독 인증기관·개인회원 무료
        Numerical behavior of FRP(Fiber Reinforced Polymer) panel in steel frame structure was evaluated through the finite element analysis in this study. In order to numerical analysis, a experimental test results was used to develop a three dimensional finite element model of steel frame specimen. Numerical results of the steel frame specimen was well predicted the experimental behavior of steel frame specimen. Based on the developed three dimensional finite element model of steel frame specimen, the behavior of FRP panel in the steel frame specimen was evaluated. From the numerical analysis results, strength of the steel frame specimen with FRP panel was governed by FRP panel. Also, diagonal compression behavior governed the FRP panel in the steel frame specimen in the numerical analysis results.
        7.
        2017.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A behavior of FRP(Fiber Reinforced Polymer) panel in a steel frame structure was evaluated through the finite element analysis in this study. In order to numerical analysis, a experimental test results was used to develop a three dimensional finite element model of steel frame specimen. Numerical results of the steel frame specimen was well predicted the experimental behavior of steel frame specimen. Based on the developed three dimensional finite element model of steel frame specimen, the behavior of FRP panel in the steel frame specimen was evaluated. From the numerical analysis results, strength of the steel frame specimen with FRP panel was governed by FRP panel. Also, diagonal compression behavior governed the FRP panel in the steel frame specimen in the numerical analysis results.
        4,000원
        9.
        2015.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Since it is impossible to predict earthquakes, they involve more casualties and property damage compared to meteorological disasters such as heavy snow and heat waves, which can be predicted through weather forecasts. This has highlighted the need for seismic design and reinforcement. Recently, the use of composite materials as reinforcement has surged because steel plate reinforcement and section enlargement are likely to result in increased weight and physical damage to structures. This study evaluates the seismic performance of panels created from composite materials, and their guide systems. The specimens were miniature versions of actual steel structures, and displacement loads were applied in the transverse direction. Seismic performance was found to improve when structures were reinforced with seismic panels.
        4,000원
        10.
        2015.04 구독 인증기관·개인회원 무료
        Because earthquakes occur within very little or no warning, they cause significant damage to property and inflict large human casualties. Seismic design and reinforcement has been extensively studied over the years, for the purpose of reducing damage from earthquakes. Composite materials are being widely used as reinforcement because the use of steel plates and section enlargement are time-consuming methods that leave physical damage to structures. This study assessed the guide system performance of FRP panels created from composite materials. Actual steel structures were reproduced in miniature form, and were subjected to transverse displacement loads. The experiments were carried out by applying two types of FRP panel guide systems to the specimens.
        11.
        2013.04 서비스 종료(열람 제한)
        Recent advancement of domestic industries and imports and exports due to increased economic power with the rise, demands the construction of the harbor structures, and a variety of structures have been constructed of reinforced concrete. Most of these harbor facilities located in the uppe rpart of the repair and reinforcement does not work smoothly. In this paper, FRP Composite Panel shows the effect applied to the harbor facilities.
        12.
        2013.04 서비스 종료(열람 제한)
        Five specimens were planned and conducted the experimental study in order to understand flexural performance of the pre-stressing hybrid FRP panel. As the result of test, The reinforced specimen with hybrid FRP panel and the pre-stressing specimen show the structural behavior comparison with the non-reinforced specimen
        13.
        2011.02 서비스 종료(열람 제한)
        건축물의 단열은 효율적인 에너지 사용을 위한 필수적인 기술이다. 중단열 콘크리트 외벽 시스템은 내/외측에 두 개의 콘크리트 벽체와 중앙부 단열재로 구성되어, 단열성능과 구조성능을 동시에 만족시킬 수 있는 시스템이다. 중단열 콘크리트 외벽 시스템을 구조체에 적용하기 위해서는 콘크리트와 단열재 부착면의 전단내력에 대한 검증이 필연적으로 요구된다. 본 연구는 파형 FRP 전단연결재로 보강한 중단열 콘크리트 외벽 시스템의 전단연결재의 매립깊이, Pitch, 폭에 따른 전단내력을 평가하기 위하여 실시되었다. 실험결과 동일단면적에서 Pitch가 넓은 경우 전단내력이 소폭으로 증가하는 결과를 보였다. 매립깊이가 깊을수록 전단내력을 증가하였고, 폭 12mm 와 18mm의 경우 각 각 35, 40mm 이상의 매립깊이가 필요할 것으로 판단된다.