본 논문은 콘크리트 구조물 보강공법 중 하나인 CFRP 표면매립 긴장보강의 거동을 분석하였다. 이를 위해 CFRP 긴장재 및 긴장시스템을 개발하고 손상후 보강거동 및 충전재 유무에 따른 비부착 보강거동을 고찰하였다. 실험결과, 비부착 실험 체의 보강효과는 무보강 실험체보다 38% 증가하지만, 부착 실험체보다 17% 감소하였다. 손상된 콘크리트를 보강한 경우는 건전한 콘크리트의 보강효과와 유사했다. 정착장치와 부착된 CFRP 긴장재는 안정된 보강효과를 보였다.
U-flanged truss beam is composed of u-shaped upper steel flange, lower steel plate of 8mm or more thickness, and connecting lattice bars. Upper flange and lower plate are connected by the diagonal lattice bars welded on the upper and lower sides. In this study the structural experiments on the U-flanged truss beams with various shapes of upper flange were performed, and the flexural and shear capacities of U-flanged truss beam in the construction stage were evaluated. The principal test parameters were the shape of upper flange and the alignment space of diagonal lattice bars. In all the test specimens, the peak loads were determined by the buckling of lattice bar regardless of the upper flange shape. The test results have shown that the buckling of lattice bar is very important design factor and there is no need to reinforce the basic u-shaped upper flange. However, the early lattice buckling occurred in the truss beam with upper steel bars because of the insufficient strength and stiffness of upper chord, and the reinforcement in the upper chord is necessary. The formulae of Eurocode 3 (2005) have presented more exact evaluations of lattice buckling load than those of KBC 2016.
FRP is a new material that has light, high strength and high durability characteristics and is emerging as a third construction material in and out of countries. However, very few studies have been done on curved FRP construction materials that can be used for tunnels or arched bridges. In particular, many joints are required for the application of curved panels to the open cut tunnel. Experimental data on the performance of the joint is required due to insufficient design criteria. The purpose of this study is to analyze the structural performance of real size, composite materials curved panels. To achieve this goal, curved panels were constructed and bending performance was tested. A numerical analysis was also performed and compared with the results of the test. The results of the test showed that the average load was 757.6 kN and the average displacement of bottom was measured at 53.12 mm. Compression stress on the upper flange and tensile stress on the lower flange were within acceptable limits of 50% of the allowable stress.
The concrete vacuum tube structure, which must maintain air-tightness, is manufactured in the form of a segment, and it is necessary to install the joints at uniform gap in order to assemble in the field. In this study, member tests were carried out to investigate the air-tightness performance at the joints of the concrete vacuum tube structures.
In this study, the fatigue behavior of reinforced concrete beams strengthened with prestressed NSM CFRP tendons. One of test objectives is to find out strengthening effect with concrete strength 20MPa, 40MPa. As a result of the study, the fatigue behavior of the concrete beams strengthened with prestressed NSM CFRP tendons were considered to be good.
This paper carried out experiments on reinforced concrete beams strengthened with prestressed NSM CFRP tendons. One of test objectives is to find out strengthening effect with concrete damage rate 0%, 30%, and 60%. Test revealed that strengthening performance of specimens with 30% and 60% presented similar to 0% strengthening specimen.
콘크리트 구조물은 시간의 경과에 따라 노후화되고, 열악한 외부 환경에 노출되어 부재 및 재료 자체의 성능이 저하된다. 콘크리트 구조물의 유지관리 방안으로 긴장력을 도입한 CFRP 긴장재를 콘크리트 내부의 표면매립(Near Surface Mounted, NSM)하여 구조물의 보수 보강을 위한 연구가 진행 중이다. 기존의 표면매립공법에 대한 연구는 긴장력을 매개변수화 하여 보강성능을 비교하는 연구가 대부분이나 표면매립공법의 파괴거동을 예측할 수 있는 3차원 유한요소해석모델에 대한 연구는 부족한 실정이다. 본 연구에서는 CFRP 긴장재와 콘크리트 부재의 계면 특성을 반영한 3차원 유한요소해석을 통해 포스트 텐션 표면매립공법의 휨 거동을 분석하였다. 또한, 포스트 텐션을 적용한 표면매립공법의 보강성능에 대한 정확한 평가를 위하여 부재단위 실험결과와 제안한 해석모델의 파괴거동을 비교분석하여 타당성을 검증하였다.