검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 4

        1.
        2018.09 KCI 등재 서비스 종료(열람 제한)
        The objective of this study was to investigate the adsorption potential of chicken feathers for the removal of OrangeⅡ (AO7) from aqueous solutions. Batch experiments were performed as a function of different experimental parameters such as initial pH, reaction time, feather dose, initial OrangeⅡ concentration and temperature. The highest OrangeⅡ uptake was observed at pH 1.0. Most of the OrangeⅡ was adsorbed at 2 h and an adsorption equilibrium was reached at 6 h. As the amount of chicken feather was increased, the removal efficiency of Orange II increased up to 99%, but its uptake decreased. By increasing the initial concentration and temperature, OrangeⅡ uptake was increased. The experimental adsorption isotherm exhibited a better fit with the Langmuir isotherm than with the Freundlich isotherm, and maximum adsorption capacity from the Langmuir constant was determined to be 0.179244 mmol/g at 30℃. The adsorption energy obtained from the Dubinin-Radushkevich model was 7.9 kJ/mol at 20℃ and 30℃ which indicates the predominance of physical adsorption. Thermodynamic parameters such as ΔGo, ΔHo, and ΔSo were -12.28 kJ/mol, 20.64 kJ/mol and 112.32 J/mol K at 30℃, respectively. This indicates that the process of OrangeⅡ adsorption by chicken feathers was spontaneous and endothermic. Our results suggest that as a low-cost biomaterials, chicken feather is an attractive candidate for OrangeⅡ removal from aqueous solutions.
        2.
        2014.06 KCI 등재 서비스 종료(열람 제한)
        Keratin wastes are generated in excess of million tons per year worldwide and biodegradation of keratin by microorganisms possessing keratinase activity can be used as an alternative tool to prevent environmental pollution. For practical use of keratinase, its physicochemical properties should be investigated in detail. In this study, we investigated characteristics of keratinase produced by Xanthomonas sp. P5 which is isolated from rhizospheric soil of soybean. The level of keratinase produced by the strain P5 increased with time and reached its maximum (10.6 U/ml) at 3 days. The production of soluble protein had the same tendency as the production of keratinase. Optimal temperature and pH of keratinase were 40℃-45℃ and pH 9, respectively. The enzyme showed broad temperature and pH stabilities. Thermostability profile showed that the enzyme retained 94.6%-100% of the original activity after 1 h treatment at 10℃-40℃. After treatment for 1 h at pH 6-10, 89.2%-100% of the activity was remained. At pH 11, 71.6% of the original activity was retained after 1 h treatment. Although the strain P5 did not degrade human hair, it degraded duck feather and chicken feather. These results indicate that keratinase from Xanthomonas sp. P5 could be not only used to upgrade the nutritional value of feather hydrolysate but also useful in situ biodegradation of feather.
        3.
        2012.02 KCI 등재 서비스 종료(열람 제한)
        We isolated and characterized novel duck feather-degrading bacteria producing keratinase. Twelve strains were isolated from soil and faces at poultry farm, and decayed feathers. They were identified as Bacillus methylotrophicus, Pseudomonas geniculata, Pseudomonas hibiscicola, Exiquobacterium profundum, Bacillus pumilus, Bacillus amyloliquefaciens, Chryseobacterium indologenes, Bacillus thuringiensis, Thermomonas koreensis, respectively, by phenotypic characters and 16S rRNA gene analysis. Generally, the level of keratinase production was not proportional to feather degradation rate. The highest keratinolytic activity was observed in the culture inoculated with Chryseobacterium indologenes D27. Although all strains did not degrade human hair, strains tested effectively degraded chicken feather(53.8-91.4%), wool(40.4-93.0%) and human nail (51.0-82.9%). These results suggest that strains isolated could be not only used to improve the nutritional value of recalcitrant feather waste but also is a potential candidate for biotechnological processes of keratin hydrolysis.
        4.
        2007.12 KCI 등재 서비스 종료(열람 제한)
        The aim of this study was to isolate chicken feather-degrading bacteria with high keratinolytic activity and to investigate cultural conditions affecting keratinolytic enzyme production by a selected isolate. A chicken feather-degrading bacterial strain CH3 was isolated from poultry wastes. Isolate CH3 degraded whole chicken feather completely within 3 days. On the basis of phenotypical and 16S rDNA studies, isolate CH3 was identified as Bacillus thuringiensis CH3. This strain is the first B. thuringiensis described as a feather degrader. The bacterium grew with an optimum at pH 8.0 and 37℃, where maximum keratinolytic activity was also observed. The composition of optimal medium for keratinolytic enzyme production was feather 0.1%, sucrose 0.7%, casein 0.3%, K2HPO4 0.03%, KH2PO4 0.04%, MgCl2 0.01% and NaCl 0.05%, respectively. The keratinolytic enzyme had a pH and temperature optima 9.0 and 45℃, respectively. The keratinolytic activity was inhibited ethylenediaminetetraacetic acid, phenylmethylsulfonyl fluoride, and metal ions like Hg2+, Cu2+ and Zn2+. The enzyme activated by Fe2+, dithiothreitol and 2-mercaptoethanol.