검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 4

        1.
        2007.12 KCI 등재 서비스 종료(열람 제한)
        The aim of this study was to isolate chicken feather-degrading bacteria with high keratinolytic activity and to investigate cultural conditions affecting keratinolytic enzyme production by a selected isolate. A chicken feather-degrading bacterial strain CH3 was isolated from poultry wastes. Isolate CH3 degraded whole chicken feather completely within 3 days. On the basis of phenotypical and 16S rDNA studies, isolate CH3 was identified as Bacillus thuringiensis CH3. This strain is the first B. thuringiensis described as a feather degrader. The bacterium grew with an optimum at pH 8.0 and 37℃, where maximum keratinolytic activity was also observed. The composition of optimal medium for keratinolytic enzyme production was feather 0.1%, sucrose 0.7%, casein 0.3%, K2HPO4 0.03%, KH2PO4 0.04%, MgCl2 0.01% and NaCl 0.05%, respectively. The keratinolytic enzyme had a pH and temperature optima 9.0 and 45℃, respectively. The keratinolytic activity was inhibited ethylenediaminetetraacetic acid, phenylmethylsulfonyl fluoride, and metal ions like Hg2+, Cu2+ and Zn2+. The enzyme activated by Fe2+, dithiothreitol and 2-mercaptoethanol.
        2.
        2007.11 KCI 등재 서비스 종료(열람 제한)
        The removal of nitrogen compounds from a wastewater is essential and it is often accomplished by biological process. An aerobic nitrate-removing bacterium was isolated from a municipal sewage treatment plant and soil. On the basis of its morphological, cultural and physiological characteristics and 16S rRNA sequencing data, this strain was identified as Pseudomonas fluorescens, and named as P. fluorescens K4. The optimal conditions of the initial pH and temperature of media for its growth were 7.0~8.0 and 30℃, respectively. P. fluorescens K4 was able to remove 99.9% of nitrate after 24 h in a culture. The strain could grow with a nitrate concentration up to 800 mg/l and was able to remove 99.9% of nitrate after 104 h of incubation. The optimal electron donor was sodium citrate for a nitrate removal. The strain K4 showed a capability of a complete nitrate removal when the initial C/N ratio was 1.0. An effect of the initial seed concentration was observed for a cell of 10% (v/v) for a nitrate removal. Especially P. fluorescens K4 could completely remove 200 mg/l ammonium for 3 days.
        3.
        2007.10 KCI 등재 서비스 종료(열람 제한)
        Feathers are produced in huge quantities as a waste product at commercial poultry processing plants. Since feathers are almost pure keratin protein, feather wastes represent an alternative to more expensive dietary ingredients for animal feedstuffs. Generally they become feather meal used as animal feed after undergoing physical and chemical treatments. These processes require significant energy and also cause environmental pollutions. Therefore, biodegradation of feather by microorganisms represents an alternative method to prevent environment contamination. The aim of this study was to investigate cultural conditions affecting keratinolytic protease production by Bacillus pumilus RS7. We also assessed the nutritive value of microbial and alkaline feather hydrolysates. The composition of optimal medium for the keratinolytic protease was fructose 0.05%, yeast extract 0.3%, NaCl 0.05%, K2HPO4 0.03%, KH2PO4 0.04% and MgCl2ㆍ6H2O 0.01%, respectively. The optimal temperature and initial pH was 30℃ and 9.0, respectively. The keratinolytic protease production under optimal condition reached a maximum after 18 h of cultivation. Total amino acid content of feather hydrolysates treated by NaOH and B. pumilius RS7 was 113.8 ㎍/ml and 504.9 ㎍/ml, respectively. Essential amino acid content of feather hydrolysates treated by NaOH and B. pumilius RS7 was 47.2 ㎍/ml and 334.0 ㎍/ml, respectively. Thus, feather hydrolysates have the potential for utilization as an ingredient in animal feed.
        4.
        2006.10 KCI 등재 서비스 종료(열람 제한)
        The textile remains have been affected largely by environmental factors including microorganisms because they were composed of organic compounds to be easy to damage. So, we selected 8 strains of the 131 isolated strains from museum environments and textile remains by high protease activity, and identified them for measuring the antibacterial activity of Gingko biloba extracts. They were identified Genus Arthrobacter spp. 3 strains (Arthrobacter nicotiannae A12, Arthrobacter sp B12, Arthrobacter oxidans B13), Genus Bacillus spp. 2 strains (Bacillus licheniformis D9, Bacillus cereus D33), Genus Pseudomonas spp. 2 strains (Pseudomonas putida A24, Pseudomonas fluorescene C21) and a Genus Staphylococcus sp. 1 strain (Staphylococcus pasteuri D3) as closest strains through the blast search of NCBI. Though antibacterial activity of the extracts of Gingko biloba leaves as MIC was lower than that of other pharmaceutical antibiotics. However the extracts was crude extracts, the extracts might have good antibacterial against most of the isolates from museum. Especially, the antifungal activity of Gingko biloba is known previously, the extracts of Gingko biloba leaves has possibility of usage as a good natural material for conservation of remains.