We investigated usefulness of chicken feather as bioadsorbent for removal of hexavalent chromium[Cr(Ⅵ)] and oil from aqueous solution. Chicken feather was chemically treated with DTPA, EDTA, NaOH and SDS, respectively. Among them, EDTA was the most effective in adsorbing Cr(Ⅵ). Cr(Ⅵ) uptake by chicken feather was increased with decreasing pH; the highest Cr(Ⅵ) uptake was observed at pH 2.0. By increasing Cr(Ⅵ) concentration, Cr(Ⅵ) uptake was increased, and maximum Cr(Ⅵ) uptake was 0.34 mmol/g. Cr(Ⅵ) adsorption by chicken feather was well described by Freundlich isotherm than Langmuir isotherm and Freundlich constant(1/n) was 0.476. As the concentration of chicken feather was increased, Cr (Ⅵ) removal efficiency was increased but Cr(Ⅵ) uptake was decreased. Most of Cr(Ⅵ) was adsorbed at early reaction stage(1 h) and adsorption equilibrium was established at 5 h. On the other hand, chicken feather adsorbed effectively oils including bunker-A and bunker-C. In conclusion, our results suggest that chicken feather waste could be used to remove heavy metal and oil; it is a potential candidate for biosorption material.
We isolated and characterized novel duck feather-degrading bacteria producing keratinase. Twelve strains were isolated from soil and faces at poultry farm, and decayed feathers. They were identified as Bacillus methylotrophicus, Pseudomonas geniculata, Pseudomonas hibiscicola, Exiquobacterium profundum, Bacillus pumilus, Bacillus amyloliquefaciens, Chryseobacterium indologenes, Bacillus thuringiensis, Thermomonas koreensis, respectively, by phenotypic characters and 16S rRNA gene analysis. Generally, the level of keratinase production was not proportional to feather degradation rate. The highest keratinolytic activity was observed in the culture inoculated with Chryseobacterium indologenes D27. Although all strains did not degrade human hair, strains tested effectively degraded chicken feather(53.8-91.4%), wool(40.4-93.0%) and human nail (51.0-82.9%). These results suggest that strains isolated could be not only used to improve the nutritional value of recalcitrant feather waste but also is a potential candidate for biotechnological processes of keratin hydrolysis.
In order to develop bacterial cellulose (BC) with antimicrobial activity against pathogenic microorganisms, silver and chitosan were incorporated into BC, respectively. Experiment results showed that antimicrobial activity against pathogenic microorganisms was improved with increasing silver concentration. Chitosan also showed a direct proportion between its concentration and antimicrobial activity. These results suggest that antimicrobial effects of BC using silver and chitosan are well proven to be effective. We also tested the stainability of BC with natural colorant for the application of food industry. Stainability of BC was enhanced with increasing natural colorant concentration. Decolorization of BC stained was observed by dipping it into distilled water with one hour-intervals. As a result, there was no significant difference. Combination of natural colorant-stainability and antibiosis of BC is expected to be useful in making colored antibiotic BC in various industrial application areas, considering its antimicrobial activity, high stainability and low decolorization tendency.
This study was conducted to isolate and characterize a novel feather-degrading bacterium producing keratinase activity. A strain K9 was isolated from soil at poultry farm and identified as Xanthomonas sp. K9 by phenotypic characters and 16S rRNA gene analysis. The cultural conditions for the keratinase production were 0.3% fructose, 0.1% gelatin, 0.04% K2HPO4, 0.06% KH2PO4, 0.05% NaCl and 0.01% FeSO4 with an initial pH 8.0 at 30℃ and 200 rpm. In an optimized medium containing 0.1% chicken feather, production yield of keratinase was approximately 8-fold higher than the yield in basal medium. The strain K9 effectively degraded chicken feather meal (67%) and duck feather (54%), whereas human nail and human hair showed relatively low degradation rates (13-22%). Total free amino acid concentration in the cell-free supernatant was about 25.799 mg/l. Feather hydrolysate produced by the strain K9 stimulated growth of red pepper, indicating Xanthomonas sp. K9 could be not only used to increase the nutritional value of chicken feather but also a potential candidate for the development of natural fertilizer applicable to crop plant soil.