This study was carried out to investigate antimicrobial activity and characteristics of Asparagus cochinchinenesis which was steamed and fermented with lactic acid bacteria. A. cochinchinensis was prepared to steaming process which was washed and freeze dried. A. cochinchinensis was steamed at 95oC for 12 h and dried by hot air at 50oC for 24 h. After steaming process, A. cochinchinensis was fermented with lactic acid bacteria (Leuconostoc mesenteroides 4395, Lactobacillus sakei 383 and Lactobacillus plantarum KCCM 11322). Ethyl acetate extracts of fermented A. cochinchinensis had antimicrobial activities for the respiratory disease bacteria (Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas aeruginosa and Escherichia coli). A. cochinchinensis had highest antimicrobial activity for the P. aeruginosa which fermented with L. mesenteroides 4395. The minimum inhibition concentration (MIC) of A. cochinchinensis fermented with L. mesenteroides 4395 was 10 mg/mL for S. aureus, S. epidermidis, E. coli and 5 mg/mL for P. aeruginosa. The MIC of A. cochinchinensis fermented with L. sakei 383 and A. cochinchinensis fermented with L. plantarum KCCM 11322 were the same. Total sugar was decreased from 863.33±17.47 mg/mL to 722.67±5.51 mg/mL during the steaming process. But reducing sugar was increased from 99.36±1.32 mg/mL to 109.29±2.71 mg/mL during the steaming process. Total sugar was decreased to 301.50-361.42 mg/mL and reducing sugar was decreased to 27.39-62.20 mg/mL during the fermentation process.
This study was carried out to investigate antimicrobial activity and characteristics of Asparagus cochinchinenesis which was steamed and fermented with lactic acid bacteria. A. cochinchinensis was prepared to steaming process which was washed and freeze dried. A. cochinchinensis was steamed at 95oC for 12 h and dried by hot air at 50oC for 24 h. After steaming process, A. cochinchinensis was fermented with lactic acid bacteria (Leuconostoc mesenteroides 4395, Lactobacillus sakei 383 and Lactobacillus plantarum KCCM 11322). Ethyl acetate extracts of fermented A. cochinchinensis had antimicrobial activities for the respiratory disease bacteria (Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas aeruginosa and Escherichia coli). A. cochinchinensis had highest antimicrobial activity for the P. aeruginosa which fermented with L. mesenteroides 4395. The minimum inhibition concentration (MIC) of A. cochinchinensis fermented with L. mesenteroides 4395 was 10 mg/mL for S. aureus, S. epidermidis, E. coli and 5 mg/mL for P. aeruginosa. The MIC of A. cochinchinensis fermented with L. sakei 383 and A. cochinchinensis fermented with L. plantarum KCCM 11322 were the same. Total sugar was decreased from 863.33±17.47 mg/mL to 722.67±5.51 mg/mL during the steaming process. But reducing sugar was increased from 99.36±1.32 mg/mL to 109.29±2.71 mg/mL during the steaming process. Total sugar was decreased to 301.50-361.42 mg/mL and reducing sugar was decreased to 27.39-62.20 mg/mL during the fermentation process.
Asparagus cochinchinensis is known to ameliorate respiratory disease. We evaluated the antimicrobial activity of non-fermented and fermented A. cochinchinensis using lactic acid bacteria and investigated the physicochemical characteristics of the fermented A.cochinchinensis. Non-fermented A.cochinchinensis showed lower levels of antimicrobial activity than the fermented A.cochinchinensis. Ethyl acetate (EtOAc) extracts of the fermented A. cochinchinensis showed antimicrobial activities against the indicator strains at lower minimum inhibitory concentration (MIC). The MIC of the EtOAc extract of non-fermented A. cochinchinensis against Escherichia coli, Staphylococcus epidermidis, and Stphylococcus aureus were 100, 75, and 100 mg/ml. In contrast, the MIC of the EtOAc extract of ACLM was 25 mg/mL against E. coli. The MIC of the EtOAc extract of ACLS was 12.5 mg/mL against S.epidermidis, and the MIC of the EtOAc extract ofACLP was 12.5 mg/mL against S.aureus. The viable cell number, pH, and acidity of A. cochinchinensis fermented by Lactobacillussakei 383 were similar to those of A. cochinchinensis fermented by Leuconostocmesenteroides 4395, but were different from those of A. cochinchinensis fermented by Lactobacillus.plantarum KCCM 11322. These results suggested that the fermented A. cochinchinensis by lactic acid bacteria may be a good candidate for application to ameliorate respiratory disease.
포유류에서 옥시토신은 다양한 기능을 가지고 있는 신경뇌하수체 호르몬이다. 옥시토신은 주로 젖의 분비를 일으키고 분만 시 자궁의 수축 및 모성 행동과 관계가 있다. 모성 행동은 스트레스에 의해 억압을 받으며 옥시토신에 의해 촉진된다. 본 연구는 제왕절개의 스트레스와 자궁내 옥시투여에 따른 모성 행동의 변화를 알아보기 위해 수행되었다. 본 실험 결과, 자연 분만 예에서 스트레스를 준 개체와 스트레스를 주지 않은 개체에서 새끼의 생존율을 비교한 결과, 스트레
Styela clava tunic is generated in large amounts as a waste from S. clava processing plants and leads to environmental problems. It destroys the beach scenery and causes a bad smell and pollution by trashing on the seashore. Therefore, purpose of this study was to investigate antioxidant and antihypertensive activities of different solvent extracts from S. clava tunic for recycling of fishery waste. Antioxidant and antihypertensive activities of all extracts were concentration-dependent. Of extracts, hot water extract showed the highest DPPH radical scavenging activity with the lowest effective concentration (EC50) value (0.733 mg/ml). Chloroform extract exhibited the highest metal chelation activity with the lowest EC50 value (2.696 mg/ml). Autoclaved water extract showed the highest NO radical scavenging activity with the lowest EC50 value (0.491 mg/ml) and n-hexane extract showed the highest reducing power (A700=1.897 at 100 mg/ml). And n-butanol extract showed the highest SOD-like activity with the lowest EC50 value (19.116 mg/ml) and ACE inhibition activity with the lowest inhibitory concentration(IC50) value (0.149 mg/ml). These results indicate that extracts obtained from S. clava tunic may potential candidate to reduce diseases caused by various oxidative stresses and hypertension.
Bacterial cellulose (BC) has played important role as new functional material for food industry and industrial products based on its unique properties. The interest in BC from static cultures has increased steadily in recent years because of its potential for use in medicine and cosmetics. In this study, we investigated culture condition for BC production by Acetobacter sp. F15 in static culture. The strain F15, which was isolated from decayed fruit, was selected on the basis of BC thickness. The optimal medium compositions for BC production were glucose 7%, soytone 12%, K2HPO4 0.2%, NaH2PO4ㆍ2H2O 0.2%, lactic acid 0.05% and ethanol 0.3%, respectively. The strain F15 was able to produce BC at 26℃-36℃ with a maximum at 32 ℃. BC production occurred at pH 4.5-8 with a maximum at pH 6.5. Under these conditions, a maximum BC thickness of 12.15 mm was achieved after 9 days of cultivation; this value was about 2.3-fold higher than the thickness in basic medium. Scanning electron micrographs showed that BC from the optimal medium was more compact than plant cellulose and was reticulated structure consisting of ultrafine cellulose fibrils. BC from the optimal medium was found to be of cellulose type I, the same as typical native cellulose.
Styela clava tunic is generated in large amounts as a waste from S. clava processing plants and causes environmental problem. Although biological activities of S. clava were reported by many investigators, study on S. clava tunic was little. In this study, therefore, tyrosinase inhibition and antioxidative activities of extracts from S. clava tunic using different solvent were investigated for recycling of the fishery waste. Among extraction methods tested, autoclaved extraction (25.7%) and hot water extraction (18.2%) appeared to be effective for extraction. The highest total phenolic content was 46.6 mg/g in autoclaved extract while the highest flavonoid content was 23.0 mg/g in chloroform extract. All extracts possessed tyrosinase inhibition activity and the inhibition activity was concentration-dependent. Inhibition concentration (IC50) against tyrosinase activity was 0.36×104 mg/ml in ethanol extract, 0.11×103 mg/ml in acetone extract and 0.27 mg/ml in n-butanol extract. Among extracts tested, hot water and autoclaved extracts displayed higher antioxidative activity than organic solvent extracts. Therefore, our data suggest that extract from S. clava tunic may potential candidate for cosmetic product with whitening effect and medicine for diseases caused by various oxidative stresses.
Gamma amino butyric acid (GABA), known as a non-protein amino acid and major inhibitory neurotransmitter in the brain, has several functional properties such as neurotransmission, induction of hypotension, tranquilizer, and diuretic effects. The purpose of this study was to isolate and identify lactic acid bacteria, producing high GABA in fermented soy curd. Thirty-two strains of tofu-forming lactic acid bacteria were isolated from kimchi which a traditional Korean food fermented with many kind of microorganism. Among 32 strains, four strains (strain No. 10, 104, 214, 249) formed firm soycurd. In order to select lactic acid bacteria having high GABA producing potential, the isolated strains were cultured in the soymilk and fermented for 48 hr at 37℃. A strain No. 383, which showed highest GABA contents in fermented soycurd, was identified as L. sakei by 16S rDNA sequencing and API analysis, and named as L. sakei 383. L. sakei 383 showed optimal growth up to 24 hr at 35℃ in MRS broth. The optimal time and temperature for GABA production were 18 hr and 35°C in soymilk. In the optimal condition time and temperature, GABA content of fermented soycurd by L. sakei 383 was 8.65 mg/100 g.
Although antioxidant activities of Korean traditional fermented foods were reported by many researchers, study on antioxidant activity of microorganism originated from Korean traditional fermented foods was little. Therefore, we improved condition for antioxidant production by a bacterium isolated from home-made Chungkookjang. We selected a bacterial strain, which showed the highest antioxidative activity, from Chungkookjang and then named GJ. The selected GJ strain was identified as Bacillus methylotrophicus by alignment data of 16S rRNA gene nucleotide sequences. Improved medium compositions for DPPH radical scavenging activity were 0.25% sucrose, 1% peptone, 0.01% MgSO4·7H2O and initial pH 6.5, respectively. Optimal culture conditions were 30℃, 200 rpm and 4% inoculum volume, respectively. In improved conditions, DPPH radical scavenging activity of GJ reached to 91% in a short time. The strain GJ also possessed ACE inhibition and other antioxidative activities; ACE inhibition activity (49.4%), ABTS radical scavenging activity (99.8%), metal chelating activity (67.9%), SOD-like activity (36.5%) and reducing power (A700 = 5.982) were observed, respectively. Therefore, our results suggest that B. methylotrophicus GJ strain may be potential candidate for functional foods, cosmetic products for anti-aging and medicine for diseases caused by oxidative stress.
In order to develop bacterial cellulose (BC) with antimicrobial activity against pathogenic microorganisms, silver and chitosan were incorporated into BC, respectively. Experiment results showed that antimicrobial activity against pathogenic microorganisms was improved with increasing silver concentration. Chitosan also showed a direct proportion between its concentration and antimicrobial activity. These results suggest that antimicrobial effects of BC using silver and chitosan are well proven to be effective. We also tested the stainability of BC with natural colorant for the application of food industry. Stainability of BC was enhanced with increasing natural colorant concentration. Decolorization of BC stained was observed by dipping it into distilled water with one hour-intervals. As a result, there was no significant difference. Combination of natural colorant-stainability and antibiosis of BC is expected to be useful in making colored antibiotic BC in various industrial application areas, considering its antimicrobial activity, high stainability and low decolorization tendency.
Liriope platyphylla has been though as an useful medical plant to improve the cough, sputum, neurodegenerative disorders, obesity, and diabetes in Korea and China from old times. In order to investigate the effects of Liriope platyphylla on expression and secretion of nerve growth factor (NGF), the mRNA expression and protein secretion were detected in the neuronal cell (B35) and neuroglial cell (C6) cultured with three differences concentration (5%, 10%, 15%) of Liriope platyphylla. In MTT assay and FACS anslysis, the some death of some B35 and C6 cells were observed in 15% extract-treated group, while other groups did not induce the death. Also, the mRNA expression of NGF were significantly increased in 5% and 10% extracts treated-group. Furthermore, the NGF protein concentration in supernatant collected from cultured cells showed the very similar pattern with mRNA expression. In order to verify the activity of secreted NGF, the culture supernatant collected from B35 and C6 cells cultured with Liriope platyphylla extracts for 24 hrs were treated into undifferentiated PC12 cells, and the differentiation level of PC12 cell were also observed with microscopes. The differentiation level of PC12 cell were significantly increased depend on the dose of extract. Therefore, these results suggested that the water extracts of Liriope platyphylla may contribute the regulation of NGF expression and secretion in the neuronal cell and be considered as an excellent candidate for a neurodegenerative disease-therapeutic drug.
As cool-season plant, Panax ginseng C. A. Meyer is planted under shade-installation with tall front and low rear. However, at different planting positions, distinct differences come out because ginseng grows at the same position within 3~5 years and the growth circumstance changes a lot by the shade-installation. So, in this study, changes of temperature, photosynthesis and chlorophyll fluorescence with varieties of shading material and planting position were investigated. Light transmittances by polyethylene shade net and silver-coated shading plate as planting materials were measured according to different planting positions. Photosynthetic rate and chlorophyll fluorescence were measured by LI-6400-40 (Li-Cor). According to different planting positions, light intensity was higher in silver-coated shading plate than in polyethylene shade net, and higher at front than rear. Also, photosynthetic rate showed the same tendency, which had a positive correlation to light intensity. But this treatment caused a lower Fo compared with polyethylene shade net because of the stress by light and temperature. Also, Fv/Fm and ETR were higher in silver-coated shading plate. Fo was similar at front and rear according to silver-coated shading plate and ETR was higher at front.