The purpose of this study is to evaluate by experiments and 3-D finite element predictions of strain-hardening cementitious composite(SHCC) structural walls. The specimen of concrete wall used shear reinforcements to satisfy with design shear strength, while the specimen of a SHCC wall used minimum shear reinforcement. The finite element prediction is based on the total strain crack model, and appropriate tensile models were applied according to the material characteristics of concrete and SHCC. The accuracy of the finite element prediction was verified by comparison with experimental results, and the SHCC wall showed superior structural performances in overall load-carrying capacity as well as in reductions of damages caused by crack localizations, even with minimum use of shear reinforcements.
PURPOSES : The piezoelectric energy road analysis technology using a three-dimensional finite element method was developed to investigate pavement behaviors when piezoelectric energy harvesters and a new polyurethane surface layer were installed in field conditions. The main purpose of this study is to predict the long-term performance of the piezoelectric energy road through the proposed analytical steps. METHODS: To predict the stresses and strains of the piezoelectric energy road, the developed energy harvesters were embedded into the polyurethane surface layer (50 mm from the top surface). The typical type of triaxial dump truck loading was applied to the top of each energy harvester. In this paper, a general purpose finite element analysis program called ABAQUS was used and it was assumed that a harvester is installed in the cross section of a typical asphalt pavement structure. RESULTS : The maximum tensile stress of the polyurethane surface layer in the initial fatigue model occurred up to 0.035 MPa in the transverse direction when the truck tire load was loaded on the top of each harvester. The maximum tensile stresses were 0.025 MPa in the intermediate fatigue model and 0.013 MPa in the final fatigue model, which were 72% and 37% lower than that of the initial stage model, respectively. CONCLUSIONS : The main critical damage locations can be estimated between the base layer and the surface layer. If the crack propagates, bottom-up cracking from the base layer is the main cracking pattern where the tensile stress is higher than in other locations. It is also considered that the possibility of cracking in the top-down direction at the edge of energy harvester is more likely to occur because the material strength of the energy harvester is much higher and plays a role in the supporting points. In terms of long-term performance, all tensile stresses in the energy harvester and polyurethane layer are less than 1% of the maximum tensile strength and the possibility of fatigue damage was very low. Since the harvester is embedded in the surface layer of the polyurethane, which has higher tensile strength and toughness, it can assure a good, long-term performance.
OBJECTIVES : The objective of this research is to determine the integrity of pavement structures for areas where voids exist. Furthermore, we conducted the study of voided-area analysis and remaining life prediction for pavement structures using finite element method. METHODS : To determine the remaining life of the existing voided areas under asphalt concrete pavements, field and falling weight deflectometer (FWD) tests were conducted. Comparison methods were used to have better accuracy in the finite element method (FEM) analysis compared to the measured surface displacements due to the loaded trucks. In addition, the modeled FEM used in this study was compared with well-known software programs. RESULTS : The results show that a good agreement on the analyzed and measured displacements can be obtained through comparisons of the surface displacement due to loaded trucks. Furthermore, the modeled FEM program was compared with the available pavement-structure software programs, resulting in the same values of tensile strains in terms of the thickness of asphalt concrete layers. CONCLUSIONS: The study, which is related to voided-area analysis and remaining life prediction using FEM for pavement structures, was successfully conducted based on the comparison between our methods and the sinkhole grade used in Japan.
This study mainly evaluate the aseismic performance of the existing intake tower structure, which is one of the national important infra structures, on the basis of the refined finite element (FE) analysis results. The realistic evaluation for structural damage was conducted by using the nonlinear material model that takes tension and compression strength of deteriorate concrete into consideration during FE modeling. In addition, not only tension crack but also compression crushing was analyzed by utilizing field contour functions provided in the program during nonlinear dynamic analyses when peak ground acceleration (PGA) occurred. After observing FE analysis results, it can be shown that the damage of the intake tower is the most likely to occur at the water level and the base support.
본 논문에서는 유한요소법을 이용하여 공동주택의 중량충격음을 예측하기 위해 구조해석 모델과 음향해석 모델을 개발하고 예측결과와 실험결과를 비교하여 정확성을 검증하였다. 패널 임피던스 값을 사용하여 거실의 적절한 흡음 특성을 반영할 수 있었으며, 수치해석에 주파수 응답함수 특성을 적용하여 1회 수치해석만으로 다양한 충격원에 대한 응답을 예측할 수 있도록 하였다. 구조진동에 의한 실내 소음해석은 유한요소 수치해석 기법이 진동 및 음향모드에 대한 응답을 비교적 정확하게 예측할 수 있도록 하였으며, 본 연구의 예측결과는 실험결과와 비교적 유사한 값을 나타내었다. 향후 정확도가 보다 향상된 수치해석 모델개발을 통해 바닥충격음 저감에 효과적인 공동주택 설계가 가능할 것으로 판단된다.
In recent years, industrial demands for superior mechanical properties of powder metallurgy steel components with low cost are rapidly growing. Sinter hardening that combines sintering and heat treatment in continuous one step is cost-effective. The cooling rate during the sinter hardening process dominates material microstructures, which finally determine the mechanical properties of the parts. This research establishes a numerical model of the relation between various cooling rates and microstructures in a sinter hardenable material. The evolution of a martensitic phase in the treated microstructure during end quench tests using various cooling media of water, oil, and air is predicted from the cooling rate, which is influenced by cooling conditions, using the finite element method simulations. The effects of the cooling condition on the microstructure of the sinter hardening material are found. The obtained limiting size of the sinter hardening part is helpful to design complicate shaped components.
팻취 보강된 철근콘크리트 구조물 해석을 위한 p-version 비선형 유한요소 모델이 제시되었다. 이방성 적층평판이론에 기초를 둔 제안된 모델은 Total Lagrangian기법에 기초한 von Karman의 대변형-소변형률 이론과 증분소성이론(incremental theory of plasticity)을 적용하였다. 콘크리트의 경화법칙(hardening rule)과 그에 따른 파괴기준을 고려하고, 단부 계면 층분리 모델(plate-end interfacial debonding model) 즉, 보강판 끝 부분에서의 콘크리트 탈락에 대한 기준으로서 Oehlers Model과 Raoof and Zhang Model을 사용하였다. 콘크리트는 두께 방향으로 층상화기법(layered model)이 이용되며, 철근과 보강판은 환산층(smeared reinforcing layer)으로 계산되도록 하였다 적분형 르장드르 다항식이 형상함수로 사용되며, 절점에서의 응력값 산출을 위해 Gauss Lobatto 수치적분법을 사용하였다. 본 연구의 목적은 p-version 유한요소법을 사용하여 RC구조물에 대한 수피해의 정확도 및 모델의 단순성을 높인 수 있도록 하였다. 따라서, 철근과 콘크리트모델에 대한 이론적 근거는 기존의 연구문헌에 근거를 두었으며, 수치해석의 적정성은 팻취 보강된 RC보와 슬래브에 대한 문헌의 실험치 및 해석치와 비교 분석되었다.
In this study, the torsional strength of reinforced concrete hollow beams is predicted by nonlinear finite element analysis. A nonlinear finite element analysis program, ATENA, was used for the analysis. A total of six reinforced concrete beams were used and the analysis was performed under the same conditions as the actual test.
Transverse joints on upper flange of modular T-shaped girder bridge are composed of lapped splice and in-situ high strength concrete. Optimal shape induced by finite element analysis through the shape parameters.