이 논문에서는 공용중인 구조물의 상시 계측 자료를 사용한 온라인 유한요소 모델 업데이트 방법을 제안한다. 일반적인 최적화 방법에 기반한 기존의 방법은 최적해를 찾기까지 반복적으로 고유치 해석을 수행해야 하므로 상시 업데이트에 사용하기에는 효과적이지 못하다. 제안하는 방법은 별도의 오프라인 작업이나 사용자의 개입이 없이 자동화된 과정으로 계측과 동시에 온라인 유한요소모델 업데이트를 수행할 수 있는 새로운 방법이다. 자동화된 Cov-SSI 알고리즘을 통해 구조물의 진동 계측 신호로부터 고유진동수 및 모드 형상을 식별하고, 이를 다시 역 고유치 신경망에 입력하여 최종적으로 업데이트된 유한요소 모델의 파라미터를 추정한다. 풍하중을 받는 20층 전단 빌딩 구조 모형에 대한 수치예제를 통해 제시한 방법이 자동으로 연속적인 유한요소모델 업데이트를 할 수 있었음을 확인하였다. 또한, 계측 도중 구조물의 특성이 변화하는 시나리오에 대한 예제에서 구조물의 변화가 일어나는 시점과 변화 후 변동된 구조 모델 파라미터 값을 성공적으로 추정할 수 있음을 확인하였다.
This paper focused on the application of finite element model updating technique to evaluate the structural properties of the reinforced concrete specimen using the data collected from shaking table tests. The specimen was subjected to six El Centro(NS, 1942) ground motion histories with different Peak Ground Acceleration(PGA) ranging from 0.06g to 0.50g. For model updating, flexural stiffness values of structural members(walls and slabs) were chosen as the updating parameters so that the converged results have direct physical interpretations. Initial values for finite element model were determined from the member dimensions and material properties. Frequency response functions(i.e. transfer functions), natural frequencies and mode shapes were obtained using the acceleration measurement at each floor and given ground acceleration history. The weighting factors were used to account for the relative confidence in different types of inputs for updating(i.e. transfer function and natural frequencies). The constraints based on upper/lower bound of parameters and sensitivity-based constraints were implemented to the updating procedure in this study using standard bounded variable least-squares(BVLS) method. The veracity of the updated finite element model was investigated by comparing the predicted and measured responses. The results indicated that the updated model replicates the dynamic behavior of the specimens reasonably well. At each stage of shaking, severity of damage that results from cracking of the reinforced concrete member was quantified from the updated parameters(i.e. flexural stiffness values).
기존의 유한요소모델개선기법들은 측정에 의한 모달 데이터와 해석적으로 계산된 시스템 행렬로 구성된 수학적인 목적함수를 사용하거나 업데이팅 변수에 관한 모달 특성의 미분함수를 사용하여야만 한다. 따라서 교량구조물과 같은 복잡한 구조물에의 적용이 어렵고 역해석에 있어 해의 안정성 문제가 발생할 수 있다. 또한 개선된 모델이 물리적인 의미를 지니지 못할 수도 있다. 본 논문에서는 유전자알고리즘과 Welder-Mead의 심플렉스기법을 사용한 하이브리드 최적화 유한요소모델개선기법을 제안하였다. 하이브리드 최적화 기법의 성능을 검증하기 위해 3개의 국부최소값과 1개의 전체최소값을 갖는 Goldstein-Price 함수를 사용하여 비선형문제에 대한 적용성을 검토하였다. 또한 최적화목적함수의 영향을 검토하기 위해 10개의 자유도를 갖는 스프링-질량 모델을 사용하여 변수연구를 수행하였다. 최종적으로 수치해석을 통해서 질량과 강성을 동시에 개선하기 위한 최적화 목적함수를 제시하고, 제안된 하이브리드 최적화 기법이 유한요소모델개선을 위해 매우 효과적인 방법임을 입증하였다.
본 논문에서는 지점부 경계조건을 고려하여 단순보의 유한요소모델을 개선하는 기법을 제안하였다. 기존의 유한요소모델개선 기법은 주로 가속도 응답으로부터 추정된 동특성(고유진동수, 모드형상)을 이용하여 유한요소모델을 개선하였다. 이렇게 개선된 유한요소모델은 실제 구조물의 정적응답을 예측하기 어렵고, 잘못된 구조물의 물성치를 추정하는 문제가 발생한다. 제안된 기법은 먼저, 구조물의 처짐과 지점부 회전변위를 계측하여 지점부 경계조건을 간략화한 유한요소모델의 회전 스프링 강성을 정량적으로 추정한다. 회전 스프링 강성이 개선된 유한요소모델과 구조물의 동특성을 사용하여 구조물의 물성치를 추정함으로써 최종 개선된 유한요소모델을 구축된다. 제안된 유한요소 모델 개선 기법과 기존 유한요소모델개선 기법을 수치해석 시뮬레이션을 통하여 비교 및 검증하였다.
In this paper, the finite element model updating method of the PSC bridge based on the static and dynamic data is verified through field experiment. The proposed method consists of two steps. First, update the rotational stiffness of the supports using the deflection and rotational displacement measurements that occur when the moving loads pass through the bridge. The stiffness of each member is updated by using the dynamic characteristics estimated from the acceleration measured by the ambient vibration test. The finite element model updated by the proposed method can predict the static and dynamic behavior of actual bridges through field experiment.
Finite Element Model(FEM) is generally used for evaluating a bridge construction. But it has discrepancy between measured data of real structure and analysis value of FEM. Therefore, FEM has to reflect characteristics of real structure using FEM updating. Static and dynamic data used to FEM updating update different characteristic of FEM. However, since it is difficult to measure static data, static information extracted from dynamic measured data can be used. In this study, new concept, LDFAC, using Lateral Distribution Factor(LDF) extracted from dynamic data is introduced as static information. As the analysis results, it is verified to get more accurate updating value when updating FEM with LDFAC.
This study proposes a FE model updating strategy based on data fusion of acceleration and angular velocity. The use of acceleration and angular velocity gives richer information than the sole use of acceleration, allowing the enhanced performance particularly in determining the boundary conditions. A numerical simulation is presented to demonstrate the proposed FE model updating approach using the data fusion.
The finite element (FE) model updating is a commonly used approach in civil engineering, enabling damage detection, design verification, and load capacity identification. In the FE model updating, acceleration responses are generally employed to determine modal properties of a structure, which are subsequently used to update the initial FE model. While the acceleration-based model updating has been successful in finding better approximations of the physical systems including material and sectional properties, the boundary conditions have been considered yet to be difficult to accurately estimate as the acceleration responses only correspond to translational degree-of-freedoms (DOF). Recent advancement in the sensor technology has enabled low-cost, high-precision gyroscopes that can be adopted in the FE model updating to provide angular information of a structure. This study proposes a FE model updating strategy based on data fusion of acceleration and angular velocity. The usage of both acceleration and angular velocity gives richer information than the sole use of acceleration, allowing the enhanced performance particularly in determining the boundary conditions. A numerical simulation on a simply supported beam is presented to demonstrate the proposed FE model updating approach.
This study proposes a FE model updating strategy based on data fusion of acceleration and angular velocity. The use of acceleration and angular velocity gives richer information than the sole use of acceleration, allowing the enhanced performance particularly in determining the boundary conditions. A numerical simulation is presented to demonstrate the proposed FE model updating approach using the data fusion.