In this study, to cope with the renewable portfolio standard system, a thermochemical process was applied to coffee residues. After the basic thermal characteristics analysis, it was judged that the gasification process could be applied because the volatile matter in coffee residues was high. The temperature and equivalent air ratio were set by using the data and the gasification characteristics with varying equivalent ratios were evaluated. Also, the experiments were conducted in a downdraft fixed bed reactor which was easy to operate and generates less tar. The best experimental results at equivalent ratio of 0.3 were obtained with syngas composition, lower heating value of product gas, gas yield, and tar yield of 16.94%, 1,410 kcal/Nm3, 2.04 Nm3/kg and 33.33 mg/L respectively. Also, cold gas efficiency and carbon conversion rate as the most important indicators of gasifier performance were 63.83% and 88.59% respectively. Comparing the gasification characteristics with sawdust in the same reactor, the value of coffee residue was higher in the cold gas efficiency but the amount of tar was higher. However, we could apply the gasification technology to coffee residues if we carried out studies to improve the gasification efficiency and to reduce the amount of tar. Furthermore, we take into consideration the fact that the supply of coffee residues was insufficient to use as a single feedstock and the consequent necessity to study the means of using it with other available fuel materials.
지난 10년간 신재생에너지 시장은 꾸준히 증가하고 있으며, 이와 더불어 폐기물 에너지화(WtE, Waste to Energy) 기술은 매년 5% 이상 꾸준히 성장할 것으로 예측된다. 폐기물 에너지화 기술은 폐기물 처리방식에 따라 물리적, 열화학적, 생물학적 기술로 분류되며 그중 하나인 폐기물 가스화 기술은 폐기물의 고부가가치 연료화 및 온실가스 감축 증대의 효과로 최근 더욱 각광받고 있다. 공급된 폐기물 내 탄소 및 수소 성분은 가스화 반응을 통해 CO, H2가 주성분인 합성가스로 전환되고 생산된 합성가스는 메탄올, 디젤류, DME 등 다양한 화학원료로 이용될 수 있으며 가스엔진 등 발전분야에 이용이 가능하다. 본 연구에서는 생활폐기물을 기반으로 제조된 비성형 고형연료를 대상으로 8 TPD급 고정층 가스화 반응기에서 합성가스의 생산특성에 대하여 연구하였다. 본 연구의 반응기는 가스화제 주입을 Down-draft 및 Up-draft의 방향으로 공급할 수 있도록 제작하였으며, 이와 더불어 가스화 반응 영역 후단에 Gas Chamber를 두어 추가적인 타르 크랙킹을 유도할 수 있도록 하였다. 기존 공기 가스화의 경우 공기 중의 대부분을 차지하는 비활성 물질인 질소의 공급량이 많아 생산가스 내 합성가스의 비율이 상대적으로 낮아 활용측면에서 발전부분에 국한 되는 한계가 있었다. 이에 반해 본 연구는 공기비(ER, Equivalent Ratio)와 더불어 순산소의 추가 공급으로 산소부화율을 제어하여 발생되는 합성가스의 주성분인 CO, H2의 비율을 30% 이상으로 높게 유지할 수 있었고 이를 통해 생산 가스의 열량 및 냉가스 효율 등 고품질의 합성가스를 생산할 수 있었다.
전 세계적으로 자원의 고갈과 온실가스로 인한 기후변화가 지구의 환경을 위협하는 요인으로 작용하고 있다. 이에 국내에서는 폐기물의 재활용을 촉진하고, 더 높은 부가가치를 부여하기 위한 기술・정책적 노력들이 이루어지고 있다. 그 중 하나로 생활폐기물을 기계적 선별공정과 생물학적 처리 공정이 결합된 MBT(Mechanical Biological Treatment) 시설이 도입되었다. 국내에서 발생되는 폐기물은 가연분 함량이 높아 SRF(Solid Refuse Fuel)로 생산할 경우 에너지 자원의 대체제로 사용 가능성이 크다고 판단된다. 이에 본 연구에서는 국내에서 생산되는 SRF에 대하여 기초특성분석을 실시하고 효율적인 열에너지 회수를 위해 연소실험을 진행하였다. 시료의 기초특성분석결과, 수분, 회분함량이 낮고 탄소성분과 발열량이 높게 나타났다. 연소 특성 및 오염 물질의 발생 특성을 파악하기 위하여 고정층 반응기에서 공기비 1.8~2.6 범위에서 실험을 진행하였다. 뿐만 아니라 각 공기비에서의 배가스 성분을 연소가스측정기(MK9000)를 이용해 그 특성을 알아보았으며 가스상 오염물질 배출특성을 알아보기 위하여 오염물질인 HCN, HCl 에 대해 분석을 실시하였다. 배가스 특성에서 CO의 농도가 거의 0%로 나타난 것으로 보아 완전연소가 잘 일어나고 있음을 판단 할 수 있었다. 또한 배출된 가스상 오염물질의 경우 배출 허용기준(HCl 15ppm, HCN 5ppm)을 모두 만족하는 것으로 나타났지만 NOx의 경우, 배출 허용 기준(80ppm)에 비해 약간 높은 값을 보였다. 모든 조건을 고려하였을 때 연소 반응이 활발히 일어나는 것을 알 수 있었지만 SRF를 연소공정에 적용시 추가적인 NOx 제어 시설이 필수적으로 설치되어야 할 것으로 판단된다.
범지구적인 산업활동으로 인하여 발생된 지구온난화에 대처하기 위하여, 기후변화협약 당사국총회에서는 신 기후변화체제 합의문인 파리 협정을 채택하였다. 이를 위해 대부분 국가가 다양한 에너지 정책을 펼치고 있으며, 우리나라는 2035년까지 신재생에너지 보급률 11 % 달성을 위하여 제4차 신재생에너지 기본계획을 수립, 발표하였다. 이러한 신재생에너지는 다양한 에너지원으로 구성되어 있으며, 이 중 폐기물 에너지화 기술로부터 생산된 폐기물에너지는 신재생에너지 보급량 중 63.5 %로 가장 높은 보급량을 차지하고 있다. 현재 폐기물의 효율적인 자원화 기술 중 하나인 고형연료(SRF, solid refuse fuel)를 이용한 발전 사업이 추진되고 있다. 국내에서 생산되는 SRF의 경우, 생활폐기물 속 재활용 자원을 최대한 회수함으로써 가연분 함량이 높아 대체 에너지로서의 가능성이 높게 평가받고 있으며, 본 연구에서는 경제성을 확보하기 위해 성형 SRF가 아닌 비성형 SRF를 사용하여 연구를 진행하였다. 또한, 열 회수 및 합성가스(H2+CO) 생산을 위해 가스화 공정을 적용해보았으며, 고정층 반응기인 down draft fixed bed와 유동층 반응기인 bubbling fluidized bed의 가스화 특성을 알아보고자 하였다. 이뿐만 아니라 가스화 공정의 주요 운전 요인 중 하나인 ER(Equivalent Ratio)에 따른 합성가스 조성, 가스 수율, 고 탄화수소 물질인 C2-C6의 함량, 합성가스의 저위발열량 그리고 가스화 효율의 가장 중요한 지표라 할 수 있는 냉가스 효율과 탄소 전환율을 통해 최적 조건을 도출하고자 하였다.
기후변화가 가속되는 현 상황에서 신재생에너지의 적극적 활용은 전세계적인 추세이며, 국내에서도 가연성 폐자원의 효율적인 친환경적 처리, 에너지 회수를 위한 다양한 연구가 진행되고 있으며, 관련정책과 법규가 만들어져 있다. 가연성 폐기물로부터 에너지를 회수할 수 있는 가스화 기술은 생산된 합성가스를 다양한 방법으로 활용할 수 있다. 합성가스가 가지고 있는 화학적 에너지를 활용하여 직접 엔진을 가동할 수 있으며, 가스화 방식에 따라 합성가스 내에 포함된 수소, 일산화탄소 등의 성분을 화학반응의 원료로 사용할 수도 있다. 따라서, 국내에서도 폐기물로부터 얻어진 합성가스를 다양한 방법으로 활용하기 위한 많은 연구들이 진행중에 있다. 본 연구에서는 폐기물 고형연료 가스화 플랜트 기술의 개발을 위해 생활폐기물을 대상으로 비성형 고형연료를 제조하고, 제조된 고형연료를 파일럿 규모의 고정층 가스화를 통해 합성가스를 생산하여 이를 직접 가스엔진 발전기에 도입함에 있어서, 고정층 반응기에서 발생되는 합성가스의 생산특성에 대해 알아보고자 한다.
지속적인 화석 연료의 사용으로 인해 발생하는 환경오염 때문에 대체에너지를 찾는데 많은 연구가 진행되고 있다. 국내에서 발생되는 폐기물은 가연분 함량이 높아 폐기물 고형연료로 생산할 경우 화석원료의 대체제로 사용 가능성이 크다. 이러한 SRF는 최근 주목 받기 시작한 기술로 폐기물을 선별・파쇄 및 건조를 거쳐 생산되며, 국내 SRF의 발열량 기준은 약 3,500kcal/kg 으로 화석연료 및 바이오매스와 비교했을 때 연료로 사용하는데 문제가 없을 정도의 품질기준을 만족시키고 있다. 하지만 SRF의 생산 효율이 60%이하로 낮은 실정에 있어, 연료로 사용가능한 폐기물들이 버려지고 있다. 따라서 본 연구에서는 이를 극복하기 위한 방안으로 SRF를 생산하고 남은 잔재물(저품위 폐기물)을 다시 고형연료로 생산하여 열처리 시설에서 에너지 회수 시설에 적용하기 위한 실험의 하나로 저품위 폐기물의 기초특성분과 본 폐기물의 연소특성에 대해서 평가하였다. 실험결과 비록 MBT(Mechanical Biological Treatment) 처리를 거친 저품위 폐기물을 사용했지만 기존 SRF 연소특성과 비교했을 때 좋은 연소특성을 보였으며, 대기배출허용기준 또한 만족하였다. 본 연구에서는 SRF를 이용하여 에너지화 기술 중 하나인 가스화기술을 적용해 실험을 진행하였다. 실험조건으로는 고정층 반응기에서 공기 산화제를 사용하였으며 반응온도와 시료투입량을 900℃와 1g/min으로 고정하였다. 최적 ER(Equivalent ratio)을 찾기 위하여 0.2,0.4,0.6으로 변화를 주었다. 또한, 가스특성을 평가하기 위하여 Micro-GC를 통해 합성가스의 조성을 파악하였으며, 건조가스수율, 냉가스 효율, 탄소 전환율을 가스화특성 평가 인자로 사용하였다.
There have been a lot of efforts to increase recycling rate by more utilization of end of life vehicles (ELVs) in Korea.The target of recycling rate was set to 85% until 2014 and 95% after 2015 with including up to 10% of energy recovery,according to the law of “regulation about resource recycling of electrical and electronic products and automobiles”.Therefore, to achieve 95% of recycling rate by the year of 2015, the automobile and recycling industries should developan innovative technology to treat automobile shredder residues (ASRs) by efficient means of reduction or conversion toenergy, which were generated as final left-over after recovering all the valuables from ELVs. As one of the options toconvert to energy forms, the gasification of them was proposed. In this study the gasification experiment was performedusing ASRs at fixed-bed reactor with a capacity of 1kg/hr, at different temperatures of 800, 1,000 and 1,200oC, and atequivalence air ratios ranging from 0.1 to 0.5. The syngas (H2+CO) yield from ASR gasification experiment was obtainedup to 86% in maximum and about 40% in minimum in the experimental conditions given. There was a trend that theamount of syngas increased with elevated temperatures and the calorific value also showed similar trend with syngasproduction.
Gasification, one of the thermo-chemical conversion technologies, has been known and researched for the conversion of low graded solid feedstock to gaseous form of fuel. Gasification for obtaining high-valued combustible gas such as hydrogen and carbon monoxide has been focused again due to high oil price with needs of alternative energy. And the gaseous product, known as synthesis gas (syngas) can be effectively utilized in a variety of ways ranging from electricity production to chemical industry. Gasification and melting processes are also operated at high temperatures with the destruction of hazardous components and production of gases, mainly CO and H2, which can be utilized as fuel gas or raw chemicals after cleaning. In this study, sawdust was experimented on in a lab-scale gasification process in order to characterize the gaseous products. At isothermal conditions at a fixed temperatures (800, 1000, 1200oC), the concentrations of CO, H2 and CH4 increased but CO2 and N2 decreased with lower equivalent ratio (ER). C2H6 concentration was varying and not depending upon ER. Carbon conversion efficiency, gas and tar yields increased with increasing ERs. Tar yield was related to carbon conversion efficiency and gas yield.