검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 10

        1.
        2024.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 초등학교 학습자들의 지질학적 시간 개념 인식에 따라 퇴적암 형성 과정을 어떻게 이해하고 있는지를 알아보기 위한 연구이다. 연구의 실행은 B 광역시에 위치한 U 초등학교 4학년 학생 57명을 최종 분석의 대상으로 진행되었으며, 데이터의 수집은 Jolley et al. (2012)이 개발한 LIFT (The Landscape Identification and Formation Test) 검사 도구를 수정 및 번안하여 객관식 문항을 구성하고, Charles and McConnell (2018)이 활용한 지질학적 경관 형성에 대한 인터뷰의 구조를 서술식 문항으로 제작하여 데이터를 수집하였다. 서술형 문항 응답 결과를 질적으로 분석하여 학생들의 지질학적 시간 개념 표출 유형을 기준으로 세 군집으로 분류하였다. 분류된 군집은 각각 구체적 시간 개념 군집(Specific time concept cluster), 막연한 시간 개념 군집(Vague time concept cluster), 시간 개념 미표현 군집(No time concept cluster)으로 명명되었으며, 각 군집별로 퇴적암 형성 과정에 대한 단답형 문항의 점수를 활용하여 통계적 검증을 수행하 였으며, “구체적 시간 개념” 군집은 “시간 개념 미표현” 군집에 비해 퇴적암 형성 과정에 대한 이해가 통계적으로 유의 미하게 높은 것을 확인하였다. 또한 그 구체적 사례에서 Ault (1982)가 언급한 지질학적 연대에 대한 과소 추정과 과대 추정의 사례를 발견하였다. 또한 각 군집별로 수집된 서술형 문항(퇴적암 형성 과정에 대한 서술)을 바탕으로 언어 네트 워크를 형성하고, 중심도 분석을 실시하여 시각화한 후 분석하였다. 분석 결과, 구체적 시간 개념 군집은 퇴적암 형성의 모든 과정에 대해 비교적 잘 인식하고 있으며, 지질학적 시간 개념이 현상과 잘 연결되어 있는 것을 확인하였다. 또한, 막연한 시간 개념 군집은 퇴적암 형성 과정에서 퇴적, 압축, 교결, 암석화, 노출의 과정이 비교적 잘 연결되어 있지 않지 만, 지질학적 시간 개념은 비교적 잘 인식하고 있었으며, 시간 개념 미표현 군집은 퇴적암 형성 과정에서 퇴적, 압축, 교 결 작용을 중심으로 설명하고 있으며, 지질학적 시간 개념의 인식 또한 거의 이루어지지 못하고 있다는 것을 확인하였 다. 추가로, 각 군집별 시간 노드의 커뮤니티가 가지는 중심도를 활용해 커뮤니티 분석을 실시간 결과, “시간 개념 미표 현” 군집은 퇴적암의 형성 과정을 시간 개념과 연관시키는 것에 어려움을 겪는 것을 확인하였다.
        4,200원
        3.
        2014.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 참다래 비가림 시설재배에서 인공수분이 착과 및 과실품질에 미치는 영향과 안정적인 착과를 위한 유효수분기간을 확인하고자 수행하였다. 또한 최근 참다래 재배농가들에서 많이 수행되고 있는 현탁액을 이용한 인공수분의 효과를 확인하고자 하였다. 인공수분은 비가림 시설재배에서뿐 아니라 노지재배에서도 참다래의 착과량이 개선되었으며 중량증가와 당도향상의 과실품질 개선효과가 확인되었다. 유효수분기간 확인을 위하여 만 개 후부터 매일 7일간 인공수분이 수행되었다. 과실의 착과율, 과실당 종자수, 그리고 과실생장량은 만개 후 4 일까지 차이가 나타나지 않았으나 만개 후 5일부터는 분명하게 감소하였다. 결과적으로 참다래 비가림 시설재 배에서 유효수분기간은 만개 후 4일 이내로 나타났다. 또한, 현탁액을 이용한 인공수분은 석송자를 이용한 것과 착과량과 과실품질의 차이를 나타내지 않았다. 따라서, 화분 현탁액을 이용한 인공수분은 참다래 재배에서 노동력을 절감할 수 있는 매우 효율적인 수분방법이 될 수 있을 것이다.
        4,000원
        4.
        2012.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        분화용 거베라의 채종 체계를 확립하기 위하여 ‘Ge- 10-47’(S4) 등 2계통에 대하여 1월부터 12월까지 15일 간격으로 자가수분을 실시하였고, ‘Ge-10-47’ 등 5계통 에 대하여 자가 수분, 형매 교배 및 타가수분 등의 교 배 방법에 따른 결실화율 및 결실화 당 종자 수를 조 사하였다. 교배시기별로는 주간 25 ± 3οC/야간 15 ± 3οC 가 유지되는 4-5월과 9-10월은 결실화율은 80% 이상이 고, 결실화 당 종자 수는 20개에서 70개로 다른 시기 보다 월등히 많았으나 겨울(11-2월) 및 여름(6-8월)에는 수정이 거의 안 되거나 낮게 나타났다. 교배 방법에 따 른 결실화율은 자가수분이 58.2%, 형매 교배는 70.8%, 타가수분은 77.5%이었다. 결실화 당 종자수도 자가수분 이 14.1개, 형매 교배가 19.0개, 타가수분은 22.7개를 나타냈다. 형매 교배 및 타가수분의 결실율이 자가수분 보다 높고, 결실화 당 채종립도 많은 경향이었다. 또한 교배 횟수는 2회가 알맞았고, 계통의 세대가 진전될수록 결실화율 및 결실화 당 종자 수는 현저히 적었다.
        4,000원
        5.
        1996.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We determine analytically the onset of thin-shell formation time of fast wind bubble with power-law energy injection Ein=E0ts Ein=E0ts , and power-law ambient density structure, ρ0(r)= ¯ ρ(r/ ¯ r)−ω ρ0(r)=ρ¯(r/r¯)−ω . Thin-shell formation time, tsf tsf can be estimated by minimizing the total time elapsed before the complete cooling of shocked gas. For uniform medium (ω=0 ω=0 ) and constant energy injection (s = 1), the onset of shell formation is found to be at tsf=5.2×103yr tsf=5.2×103yr , which agrees Quite well with the results of FCT 1D numerical calculation. We solve the line transfer problem with previous result derived by numerical calculation in order to calculate line profile of [OIII] (λ=5007\AA) forbidden line. In general, radiative outer shell causes the formation of double peaked line profile. Each peak corresponds to approaching and receeding shells with large velocities. Our line profiles show good agreements with observation of expanding shell structure.
        5,100원
        6.
        2017.09 KCI 등재 서비스 종료(열람 제한)
        In this paper, we present a finite-time sliding mode control (FSMC) with an integral finitetime sliding surface for applying the concept of graph theory to a distributed wheeled mobile robot (WMR) system. The kinematic and dynamic property of the WMR system are considered simultaneously to design a finite-time sliding mode controller. Next, consensus and formation control laws for distributed WMR systems are derived by using the graph theory. The kinematic and dynamic controllers are applied simultaneously to compensate the dynamic effect of the WMR system. Compared to the conventional sliding mode control (SMC), fast convergence is assured and the finite-time performance index is derived using extended Lyapunov function with adaptive law to describe the uncertainty. Numerical simulation results of formation control for WMR systems shows the efficacy of the proposed controller.
        9.
        1993.09 KCI 등재 서비스 종료(열람 제한)
        조직(組織) 배양(培養)을 통(通)하여 대량(大量) 생산(生産)된 반하(半夏) 종구(種球)의 포장재배(圃場裁培) 파종(播種) 적기(適期)를 구명(究明)하기 위하여 '90년(年) 4월(月) 20일(日), 5월(月) 20일(日), 6월(月) 20일(日), 7월(月) 20일(日), 8월(月) 20일(日) 및 9월(月) 20일(日)에 파종(播種)하여 출아특성(出芽特性), 생육특성(生育特性), 괴경형성(傀莖形成) 및 수량(收量)에 관련된 몇 가지 형질(形質)에 대하여 2개년간(個年間)('90~'91) 검토(檢討)한 결과(結果)를 요약(要約)하면 다음과 같다. 1. 파종기별(播種期別) 출아소요기간(出芽所要期間)(파종(播種)~출아(出芽))은 9~26일(日) 이었으며 파종기(播種期)가 빠른 4월(月) 20일(日)이 26일(日), 온도(溫度)가 높은 시기(時期)인 8월(月) 20일(日) 파종(播種)이 9일(日)로 가장 짧았으며 이 기간(期間)의 적산온도(積算溫度)는 256~334℃이었다. 2. 파종기별(播種期別) 출아율(出芽率)은 68~87%로 대체로 좋았으나 7월(月) 20일(日) 파종(播種)은 고온(高溫) 및 한발(旱魃)의 영향(影響)으로 저조(低調) (55%)하였다. 3. 파종기별(播種期別) 재배기간중(栽培期間中)(2년(年)) 생육과정(生育過程)은 4월(月) 20일(日), 5월(月) 20일(日), 6월(月) 20일(日) 및 7월(月) 20일(日) 파종(播種)은 4회(回) 생육(生育)을, 8월(月) 20일(日)과 9월(月) 20일(日) 파종(播種)은 3회(回) 생육(生育)하였고, 총(總) 생육기간(生育期間)은 125일(日)~239일(日)로 파종기(潘種期)가 빠를 수록 길었으며 9월(月) 20일(日) 파종(播種)은 125일(日)에 불과(不過)하였다. 4. 파종기별(潘種期別) 수확(收穫) 당시(當時)의 초장(草長), 괴경장(塊莖長) 및 괴경폭(塊莖幅)은 4월(月) 20일(日)~6월(月) 20일(日) 파종(播種)은 큰 반면(反面) 7월(月) 20일(日) 이후(以後) 파종(播種)은 극히 적었으며 초장(草長)과 괴경장(塊莖長), 괴경폭(塊莖幅) 및 괴경수량(塊莖收量)과는 유의(有意) 상관(相關)이 인정(認定)되었다. 5. 파종기별(播種期別) 수확당시(收穫當時)의 m2당(當) 주수(株數)는 5월(月) 20일(日)과 6월(月) 20일(日) 파종(播種)은 다른 파종기(播種期)에 비해 유의적(有意的)으로 많았으며(P〈0.05) 7월(月) 20일(日) 이후(以後) 파종(播種)은 급멸(急滅)하였다. 6. 파종기별(播種期別) 생체수량(生體收量)은 4월(月) 20일(日) 파종(播種)(352kg/10a)에 비해 5월(月) 20일(日)이 9%(P〈0.05), 6월(月) 20일(日)이 3% 증수(增收)하였고, 7월(月) 20일(日) 이하(以後) 파종(播種)은 59~81%까지 크게 감수(減收)하였으며 건물수량(乾物收量)도 같은 경향(傾向)이었다. 7. 파종기별(播種期訓) 상품가치(商品價値)가 있는 7.1mm이상(以上)의 괴경(塊莖)크기 분포(分布)는 5월(月) 20일(日) 파종(播種)이 322kg/10a, 6월(月) 20일(日) 파종(播種)이 299kg/10a으로 훨씬 많은 반면 7월(月) 20일(日)~9월(月) 20일(日) 파종(播種)은 55~117kg/10a으로 극히 적었다. 8. 수량(收量)과 m2당(當) 주수(株數)와는 고도(高度)의 상관(相關)(r=0.992**)이 인정(認定)되었으며 다수확(多收獲)을 위해서는 기내(器內) 생육(生産) 반하(半夏) 종구(種球)를 5월(月) 20일(日)~6월(月) 20일(日)에 파종(播種)하는것이 가장 바람직하였다.