Fas-associated death domain protein (FADD) functions as an apoptotic adapter in mammals, recruiting caspases for death-inducing signaling complexes, while in lower animals, it interacts with IMD and DREDD to initiate antimicrobial responses. In this study, we examined the T. molitor FADD sequence (TmFADD) using molecular informatics methods to understand its involvement in the host's immune response against microorganisms. Knocking down TmFADD transcripts resulted in increased susceptibility of T. molitor larvae to E. coli, underscoring the significance of FADD in insect defense mechanisms and providing valuable insights into insect immunity.
Variance of conceptus interferon tau (IFNT), produced by the embryonic trophectoderm, is known as a major conceptus protein that signals the process of maternal recognition of pregnancy in ruminants, essential for the maintenance of early pregnancy. Similar to other IFN genes such as IFNA and IFNB, multiple IFNT genes are present. However, some kinds of IFNT genes actively transcribed and regulated in bovine conceptuses have not been well characterized. In this study, during the course of bovine IFNT gene transcription through the use of next generation sequencer SOLiD3, revealed that among 38 IFN genes registered, only two transcripts, IFNT1 and IFNTc1, were found in conceptuses during early pregnancy. Also, to identify a transcription factor(s) involved in the regulation of IFNT genes, mRNAs for various known transcription factors were investigated by real-time PCR in conceptus tissues, respectively. Furthermore, compared to the IFNT genes, IFNT1 and IFNTc1 had same active levels, which were previously shown to correlate with the appearance of effective antiviral activity. However, the expression levels of these Luc activities differed. Bovine ear fibroblast (EF) cells were cotransfected with luciferase reporter constructs carrying upstream (–631 to -51) promoter regions of IFNT1 or IFNTc1 and various transcription factor expression plasmids, CDX2, AP1(JUN), ETS2 and/or cAMP-response element binding protein (CREB)-binding protein (CREBBP). CDX2, either alone with the other 2 transcription factors, was found to increase luciferase activity approximately 14- and 11-folds, respectively. The degree of transcriptional activation of the IFNTc1 gene was not similar to that IFNT1 gene by AP1, ETS2 or/and CREBBP, expression plasmid. These results suggest that two isoforms of bovine conceptus IFNT genes are regulated differently in conceptuses during early pregnancy.
polydnavirus, Cotesia plutellae bracovirus (CpBV), is symbiotic to an endoparasitoid wasp, C. plutellae, which specifically parasitizes young larvae of the diamondback moth, Plutella xylostella. CpBV contains some genes originated from other insect viruses. CpBV-E94k1 and CpBV-E94k2 are homologous to corresponding baculovirus gene E94k, and may play an important role in host-parasitoid interactions. This study was conducted to confirm the origin and function of CpBV-E94k by analyzing its sequence and functional assays. Our phylogenetic analysis indicates that CpBV acquires these E94k genes from baculoviruses. These two genes were expressed during entire period parasitization period. Expression of these E94ks was also tissue-specific because they were expressed in the hemocyte and fat body, but not in the other tissues. Subsequent analysis of gene function by RNA interference showed that it clearly inhibited host immune and developmental processes
Endocrine disrupting chemicals (EDCs) have detrimental effects on human health. Among these EDCs, bisphenol A (BPA) binds to estrogen receptors (ERs) to stimulate estrogen-mediated responses. BPA is assumed to disrupt the reproductive and developmental system of humans. In addition, BPA has recently been suspected as a risk of carcinogenesis. Because BPA can cause abnormal estrogen-mediated response in the organism, exposure to BPA may stimulate growth of estrogen-dependent breast cancers in human. In breast cancer, cyclin E and cyclin-dependent kinase inhibitor p27 are important in G1/S phase transition during cell cycle progression. In this study, using an MTT assay, we investigated the effect of BPA on proliferation of MCF-7 breast cancer cells in vitro. In addition, we also analyzed the transcriptional levels of cyclin E and p27 following treatment with BPA using semi-quantitative RT-PCR. As a result, treatment with BPA resulted in significant induction of breast cancer cell growth, compared to a vehicle. BPA caused alterations of cyclin E and p27 mRNA expression. Expression of cyclin E was increased by BPA, while p27 was decreased at 24 h after treatment with BPA in MCF-7 breast cancer cells. Taken together, these collective results suggest that exposure to BPA induced breast cancer cell proliferation with deregulation of the cell cycle. A further study is required in order to determine the effects of BPA on the carcinogenic process in in vivo models.
The origin of squamous cell components in salivary gland tumor has been not yet clarified in detail. The squamous cell differentiation from adenocarcinoma has been reported in various carcinoma by HPV transfection in vitro. The adenocarcinoma cells adjacent to the squamous cell carcinoma components were positive for HPV. This is thought to indicate that after adenocarcinoma cells are transfected with HPV, they undergo morphological changes, and that squamous cell differentiation follows. The purpose of this study were to examine the effects of HPV-16 E6/E7 gene transfection into SGT cell line from human salivary gland adenocarcinoma, and to study the relation between the E6/E7 gene and squamous differentiation. Plasmid pBR322 containing HPV-16 was transfected into cultured SGT cell line using lipofectin method. Hygromycin was used as a selection marker. The presence of HPV E6/E7, transglutaminase 1, and involucrin mRNAs and protein in E6/E7 gene transfected cells was investigated by RT-PCR and immunoslot blot method. The apoptosis index was analysed by flow cytometry. The growth rate of E6/E7 gene transfected cells was reduced. E6/E7 transfected SGT cells increased apoptosis index. Involucrin and TGase I mRNAs by the squamous cell differentiation was most conspicuous in the E6/E7 gene transfected cell compared with non transfected cells. Squamous cell differentiation demonstrated in the transfectedSGT cell line, which expressed E6/E7 fusion gene mRNA.E6/E7 gene transfected cells showed squamous cell differentiation, expressing involucrin and TGase 1 protein by immunoslot blotting. The transfected SGT cell which expressed E6/E7 gene mRNA showed the squamous cell differentiation particularly clearly, and apoptosis was also demonstrated. It suggested that E6/E7 gene transfection into human salivary gland adenocarcinoma cells might induce clear squamous cell differentiation and contribute to study the pathogenesis of human salivary gland adenocarcinoma.
To develop transgenic birdsfoot trefoil (Lotus corniculatus L.) plants tolerant to environmental stress, Arabidopsis NDPK gene (AtNDPK) was introduced into birdsfoot trefoil plants using Agrobacterium-mediated transformation and expressed powerfully under
Cervical carcinoma is the 1st most common malignancy in korean females. HPV have been strongly linked to progression of cervical carcinoma. E6 and E7 as a small DNA virus encoding two major oncoproteins of HPV can act together to produce efficient immortalization of primary human epithelial cells, providing further evidence for the role of HPV in tumorogenesis. It is important to pursue the development of Immortalized human epithelial keratinocyte(IHEK) culture model which could be related to the pathogenesis between cervical and oral carcinoma. If we establish IHEK transfected by E6E7 gene, IHEK will be accepted as a model system for HPV-linked cervical carcinogenesis. The purpose of this study were to culture primarily normal human epithelial keratinocyte(NHEK), and to establish IHEK for applying these results to cervical and oral carcinogenesis in the future. The obtained results were as follows. 1. After 7-9 passages, cultured NHEK was almost senesce and disappeared, but cultured IHEK showed most basal cell and monolayer of polyhedral cells under 0.05mM Ca++, while small area of stratification and flattened epithelial cells with irregular border under 1.2mM Ca++. 2. The cultured IHEK showed relatively resistant growth to high calcium condition. 3. The mRNA E6E7 in cultured IHEK by RT-PCR was detected. 4. During the terminal defferentiation in cultured NHEK and IHEK, increase of insoluble cornified cell envelope formation was accompanied with induction of TGase 1 activity. But the cultured IHEK showed less CEM and TGase 1 activity than those of cultured NHEK. 5. Cultured IHEK showed non-tumorogenecity, but week anchorage independence. From the aboving results, we have developed technique to transform NHEK into IHEK by transfecting cells with E6E7 gene. Cultured IHEK was established as intermediate stage cell for studying the pathogenesis of human cervical carcinoma.
UGT72E3/2 gene encodes UDP-glycosyltransferase shown to glucosylate several phenylpropanoids such as syringin and coniferin. Syringin has effect of anti-stress and anti-fatigue. Korean soybean variety Kwangan was transformed with UGT72E3/2 gene. This gene was transformed into Kwangan using highly efficient soybean transformation system. This study used two promoters, beta-conglycinin promoter for seed-specific expression and 35s promoter for total expression. Transgenic plants were confirmed for gene introduction and their expression using PCR and RT-PCR. The analysis of syringin in transgenic plants was performed using HPLC. Currently, the confirmation of stable gene introduction with UGT72E3/2 gene is also performing by Southern blot analysis.
Plants are known to have homeostatic cellular mechanisms to control the concentration of heavy metal inside the cell. We tried to retrieve rice RING finger protein genes, which are believed to regulate substrates via ubiqitinations, related to metal ions detoxification mechanisms. A total of 48 rice RING finger proteins were randomly selected and then examined for their expression patterns as exposed to cadmium and arsenic treatments. We discovered a RING finger protein gene that was significant up-regulated against both treatments and then named Oryza sativa heavy metal induced 1 (OsHMI1). We tested subsequently OsHMI1 expression patterns against to salinity, dehydration, cold, heat stress and phytohormones treatments. In addition, we evaluated its subcellular localization and determined E3 ligase activity. The interaction partner proteins were screened via yeast-two hybridization. These results might shed further light on the understanding of homeostatic cellular mechanisms to control heavy metal detoxification via protein degradation in plants.
We isolated low temperature inducible genes using suppression subtractive hybridization (SSH) method and were able to obtain to cloneMLT107 gene encoding peroxiredoxin and aminotransferase. The full-length cDNA of MLT107 is 1,049 bp with an open reading frame (ORF) consisting of 261 amino acid (aa). Genomic southern blot confirmed that mungbean genome has two copies of MLT107 gene. Northern blot analysis was also carried out for the gene expression during ABA, NaCl, drought, wounding and H2O2 stresses. The expression of MLT107 gene significantly decreased by ABA, NaCl and drought stress, but wounding and H2O2 stress significantly induced MLT107 gene expression. Especially, H2O2 strongly induced the MLT107 gene expression. The expression of MLT107gene during low temperature stress started to increase in 3 h after treatment, and than slightly decreased and again increased at 24 h. Using GFP fusion vector, smGFP-MLT107 was targeted both to mitochondria and chloroplast. However, it was mostly targeted to mitochondria and partially targeted to chloroplast. For the functional analysis of MLT107, MLT107 recombinant protein was heterologously expressed in E.coli. The MLT107 recombinant cells showed enhanced antioxidant activity compared to that of vector control cells.