Bentonite, primarily composed of montmorillonite, plays a crucial role as one of the engineering barrier materials in a deep geological repository (DGR). The advantageous properties of montmorillonite, such as its swelling capacity, low permeability, and low thermal conductivity, make it a key component as a buffer material for isolating high-level radioactive waste from the surrounding natural environment. It has been known that the stability of montmorillonite is influenced by a wide range of pressure-temperature-composition (P-T-X) conditions relevant to the DGR environment. When considering potential geological events, of notable concerns are its interactions with groundwater or seawater at elevated temperatures, leading to safety hazards within the system. In this study, therefore, we investigated the hydration and dehydration reactions of Ca-montmorillonite with saline fluids such as NaCl and KCl solutions at elevated pressures and temperatures by conducting in-situ X-ray diffraction experiments using both a capillary sample heating cell and a resistive-heated diamond anvil cell. As a result, we observed different hydration states of montmorillonite depending on the chemical composition of fluids, i.e., tri-hydrated layers in NaCl and bi-hydrated layers in KCl solutions, respectively. Furthermore, we identified that montmorillonite undergoes distinct stepwise dehydration with increasing temperature, and the dehydration temperature of montmorillonite significantly increases with increasing water pressure. Consequently, this study would provide insights into the stability of hydrated montmorillonite in a seawater-dominated fluid environment and its implications for the long-term safety of the disposal system.
The buffer is installed around the disposal canister, subjected to heating due to decay heat while simultaneously experiencing expansion influenced by groundwater inflow from the surrounding rock. The engineering barrier system for deep geological disposal require the evaluation of longterm evolution based on the verification of individual component performance and the interactions among components within the disposal environment. Thus, it is crucial to identify the thermalhydro- mechanical-chemical (THMC) processes of the buffer and assess its long- and short-term stability based on these interactions. Therefore, we conducted experimental evaluations of saturationswelling, dry heating, gas transport, and mineralogical alterations that the buffer may undergo in the heated-hydration environment. We simulated a 310 mm-thick buffer material in a cylindrical form, simulating the domestic disposal system concept of KRS+ (the improved KAERI reference disposal system for spent nuclear fuel), and subjected it to the disposal environment using heating cartridges and a hydration system. To monitor the thermal-hydro-mechanical behavior within the buffer material, load cells were installed in the hydration section, and both of thermal couples and relative humidity sensors were placed at regular intervals from the heat source. After 140 days of heating and hydration, we dismantled the experimental cell and conducted post-mortem analyses of the samples. In this post-mortem analysis, we performed functions of distance from the water contents, heat source, wet density, dry density, saturation, and X-Ray diffraction analysis (XRD). The results showed that after 140 days in the heated-hydration environment, the samples exhibited a significant decrease water contents and saturation near the heat source, along with very low wet and dry densities. XRD Quantitative Analysis did not indicate mineralogical changes. The findings from this study are expected to be useful for input parameters and THMC interaction assessments for the long-term stability evaluation of buffer in deep geological disposal.
Mechanism and kinetics of Rhenium complexes as a surrogate of Technetium-99 (99Tc) is worthy of study from radioactive waste safe disposal perspective. Re(IV)-EDTA was synthesized via the reduction of Re(VII) with Sn(II) in the presence of Ethylenediaminetetracetic acid (EDTA). The Re(IV)-EDTA was then degraded by H2O2 (7–30%) at pH of 3–11 in ionic strength I = 0–2 M solution. The Re- EDTA was observed to degrade more rapidly at pH of ≤ 3–4 than one of ≥ 10–11 and remained stable at pH = 7–9. At a low acidic pH, the complex degradation process was facilitated by protonation and corresponded to the exponential model (y = k. e–nt). In contrast, at an alkaline pH, the degradation was facilitated OH– complexation with Re(IV) and corresponded to a linear model (y = –mt + C). Complex degradation followed the zero-order rate kinetics for the H+ and Re-EDTA parameters, apart from a pH of 3, for which degradation was a better fit to first order kinetics. A higher Re(IV)-EDTA stability at a pH of 7–9 demonstrated that Re(IV)-EDTA (or 99Tc(IV)-EDTA) tends to be more persistent in natural environmental conditions.