Conventionally, metal materials are produced by subtractive manufacturing followed by melting. However, there has been an increasing interest in additive manufacturing, especially metal 3D printing technology, which is relatively inexpensive because of the absence of complicated processing steps. In this study, we focus on the effect of varying powder size on the synthesis quality, and suggest optimum process conditions for the preparation of AlCrFeNi high-entropy alloy powder. The SEM image of the as-fabricated specimens show countless, fine, as-synthesized powders. Furthermore, we have examined the phase and microstructure before and after 3D printing, and found that there are no noticeable changes in the phase or microstructure. However, it was determined that the larger the powder size, the better the Vickers hardness of the material. This study sheds light on the optimization of process conditions in the metal 3D printing field.
목 적: 안경렌즈의 건열 환경에 따라 코팅 막의 균열 상태를 확인하고자 하였다.
방 법: 일반적으로 안경렌즈에 가장 많이 사용되는 자외선 차단이 처리되고, 하드코팅 및 반사방지의 코 팅이 되어 있는 굴절력 –2.00 D., 굴절률 1.56, 중심두께 1.20 mm, 렌즈직경 73 mm의 렌즈를 사용하였다. 여름철 야외 주차장의 자동차 실내 평균온도인 70℃와 대중목욕탕 사우나 및 한증막 실내의 평균온도인 9 0℃ 환경을 만들기 위하여 전기오븐으로 건열에 의한 70℃와 90℃로 각각 가열시키 후 렌즈를 넣었다. 70℃ 에서는 20분 동안 가열하면서 5분 간격으로, 90℃에서는 9분 동안 가열시키면서 3분 간격으로 지정된 렌즈 를 꺼내어 세극등 현미경(SL-102, Zeiss, Germany)으로 코팅 막의 균열을 관찰하였다. 분광 광도계 (UV-2450, Shimadzu, Japan)를 이용하여 380 nm~780 nm의 가시광선 범위에 대한 광투과율과 반사율을 측정하여 실험 전후를 비교하였다.
결 과: 70℃에서는 최초 5.1분에서 10분 사이에 코팅 막이 균열되었음을 확인하였다. 5분을 가열하였을 경우에는 코팅 막의 균열이 관찰되지 않았다. 90℃에서는 1분을 가열 하였을 경우를 제외하고는 모든 시간 대에서 코팅 막의 균열이 관찰되어 1.1분에서 3분 사이에 최초로 코팅 막이 균열되었음을 확인하였다. 광투 과율은 코팅 막의 균열이 증가함에 따라 감소하였고 반사율 역시 감소하였다.
결 론: 여름철 주차장의 자동차 내(평균 70℃)에 비치되어 있는 안경과 대중목욕탕의 사우나 한증막 내 (평균 90℃)에서 안경 착용자를 쉽게 볼 수 있는 현실에서 안경 착용자의 관리상의 세심한 주의가 필요하며 더불어 구체적이고 현실적인 연구 자료를 통해 안경관리 기준 및 안경 착용자에 대한 홍보와 교육 자료가 필 요하다고 하겠다.
Amino acid transporters play an important role in supplying organic nutrient to cells. The expression profile of L-type amino acid transporter 1 (LAT1) and its subunit 4F2 heavy chain (4F2hc) on different differentiation stages in 4-NQO induced rat tongue carcinogenesis was examined using immunohistochemical analysis. The gradually increasing LAT1 and 4F2hc expression detected during the multistep progressive change shows that the protein may have an important role i n the multistep tongue c arcinogenesis. Conclusively, LAT1 and 4F2 hc c an b e a useful b iomarker f or a better understanding of multistep tongue carcinogenesis, while the specific inhibition o f LAT1 and 4F2 hc would be a new rationale for suppressing tumor cell growth in tongue cancer.
The purpose of this study is to investigate the history, space structures, blueprint, and techniques of the construction of Nam-hea city walls. Nam-hea city walls were relocated in 1439 from Whagumhun-Sansung(火金峴山城) to the present site, nearby Nam-hea Um.(南海邑) The city walls were rebuilt after they were demolished during Japanese invasion on Korea in 1592 and their reconstruction was also done in 1757. At present, the city walls only partially remained due to the urbanization of the areas around them. A plane form of the City wall is a square, and the circumference is approximately 1.3km. According to the literature, the circumference of the castle walls is 2,876尺, the height is 13尺, and the width is 13尺 4寸. Hang-Kyo(鄕校). SaGikDan(社稷壇), YoeDan(厲壇), SunSo(船所) which is a harbor, as well as government and public offices such as Kaek-Sa(客舍) and Dong-Hun(東軒) existed inside the castle walls. Inside the castle walls were one well, five springs, one ditch, and one pond, and in the castle walls, four castle gates, three curved castle walls, and 590 battlements existed. The main government offices inside castle walls were composed of Kaek-Sa, Dong-Hun, and Hang-Chung(鄕廳) their arrangements were as follows. Kaek-Sa was situated toward North. Dong-Hun was situated in the center of the west castle walls. The main roads were constructed to connect the North and South castle gate, and subsidiary roads were constructed to connect the East and West castle gate. The measurement used in the blueprint for castle wall was Pobaek-scale(布帛尺:1尺=46.66cm), and one side of it was 700尺. South and North gate were constructed in the center of South and North castle wall, and curved castle walls was situated there. One bastion was in the west of curved castle walls and two bastions were in the east of curved castle walls. The east gate was located in the five eighths of in the east castle wall. Two bastions were situated in the north, one bastion in the south, and four bastions in the west castle wall. The castle walls were constructed in the following order: construction of castle field, construction of castle foundation, construction of castle wall, and cover the castle foundation. The techniques used in the construction of the castle walls include timber pile(friction pile), replacement method by excavation.
In order to survey the traditional salt production at the eastern coast, Young-Hae, in Yi-dynasty, data of salt production were collected through interviewing with whom had received the skill from ancestors and analyzed the data. The results obtained were as follows. Salt-producer take the salt water containing much salt and then he transported the salt-water by having water buckets an back in with using the water-toting device (Mul ji ge). Finally he carried out the irrigation (Mul dae gi) to a ditch (Dorang). It is noteworthy that the East-sea salt production method was not selecting a method of salt-pond style with a bank for salt production but using the salt water transportation fashion without a bank for that. Judging from these facts, we could conclude that traditional salt production method was handed down into the Yi-dynasty from ancient times.